



# Module 9: Address Resolution



**Introduction to Networks** 



# **Module Objectives**

- Module Title: Address Resolution
- Module Objective: Explain how ARP and ND enable communication on a network.

| Topic Title            | Topic Objective                                          |
|------------------------|----------------------------------------------------------|
| 9.1 MAC and IP         | Compare the roles of the MAC address and the IP address. |
| 9.2 ARP                | Describe the purpose of ARP.                             |
| 9.3 Neighbor Discovery | Describe the operation of IPv6 neighbor discovery.       |









## **End-to-End Connectivity**

- The combination of MAC and IP facilitate the End-to-End communication
- Destination and source MAC addresses have local significance and change every time a frame goes from one LAN to another

|  |  | Destination<br>IP Address<br>192.168.1.5 | Data | Trailer |  |
|--|--|------------------------------------------|------|---------|--|
|--|--|------------------------------------------|------|---------|--|

 Destination and source IP addresses in a packet header remain constant along the entire path to a target host

|  | Source MAC Address<br>AA:AA:AA:AA:AA | Address | Destination<br>IP Address<br>192.168.1.5 | Data | Trailer |
|--|--------------------------------------|---------|------------------------------------------|------|---------|
|--|--------------------------------------|---------|------------------------------------------|------|---------|



#### **Destination on Same Network**

- There are two primary addresses assigned to a device on an Ethernet LAN:
  - Layer 2 physical address (the MAC address) Used for NIC to NIC communications on the same Ethernet network.
    - Layer 2 addresses are used to deliver frames from one NIC to another NIC on the same network.
  - Layer 3 logical address (the IP address) Used to send the packet from the source device to the destination device.
    - If a destination IP address is on the same network, the destination MAC address will be that of the destination device.





#### **Destination on Remote Network**

- When the destination IP address is on a remote network, the destination MAC address is that of the default gateway.
  - ARP is used by IPv4 to associate the IPv4 address of a device with the MAC address of the device NIC.
  - ICMPv6 is used by IPv6 to associate the IPv6 address of a device with the MAC address of the device NIC.











## **EtherType Field**

- An ARP message is 28 Bytes in length.
- An EtherType field of 0x0806 in the header of the Ethernet frame causes the NICs receiving an ARP request to pass the data portion of the
  - Ethernet frame to the ARP process.
- Common EtherType Field values:
  - 0x0800 IPv4
  - 0x0806 ARP frame
  - 0x8035 Reverse ARP (RARP)
  - 0x8100 802.1Q (VLAN-tagged)
  - 0x86DD IPv6
  - 0x9100 VLAN double tagging





# **Ethernet: ARP Message Payload Format**

| Function                | Description                                                                                                                                                                                                                                                                                         |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardware Type           | This field specifies the type of hardware used for the local network transmitting the ARP message and the type of addressing (value: <b>6 – 802 networks</b> , 15 – Frame Relay, 17 – HDLC, 20 – Serial Line).                                                                                      |
| Protocol Type           | This field is the complement of the <i>Hardware Type</i> field, specifying the type of layer three addresses used in the message. For IPv4 addresses, this value is <b>2048</b> ( <b>0800 hex</b> ), which corresponds to the EtherType code for the Internet Protocol. 34,525 (86DD hex) for IPv6. |
| Hardware Address Length | Specifies how long hardware addresses are in this message. For Ethernet or other networks using IEEE 802 MAC addresses, the value is <b>6</b> (bytes).                                                                                                                                              |
| Protocol Address Length | The complement of the preceding field; specifies how long protocol (layer three) addresses are in this message. For IP(v4) addresses this value is of <b>4</b> (bytes).                                                                                                                             |
| Opcode                  | This field specifies the nature of the ARP message being sent (value: $1$ – ARP Request, $2$ – ARP Reply, $3$ – RARP Request, $4$ – RARP Reply).                                                                                                                                                    |
| Sender Hardware Address | MAC address of the source device.                                                                                                                                                                                                                                                                   |
| Sender Protocol Address | The IP address of the source device.                                                                                                                                                                                                                                                                |
| Target Hardware Address | MAC address of the destination device.                                                                                                                                                                                                                                                              |
| Target Protocol Address | The IP address of the destination device.                                                                                                                                                                                                                                                           |



## **ARP Functions/Operation**

#### ARP Table

- Used to find the data link layer address that is mapped to the destination IPv4 address.
- As a node receives frames from the media, the switch's ARP table records the source IP (Layer 3) and MAC (Layer 2) address as a mapping in the ARP table.

#### ARP Request

- Layer 2 broadcast (FF-FF-FF-FF-FF) to all devices on the Ethernet LAN.
- The node that matches the IP address in the broadcast will reply.
- If no device responds to the ARP request, the packet is dropped because a frame cannot be created.
- Static map entries can be entered in an ARP table, but this is rarely done.



#### **ARP Overview**

- ARP requests are received and processed by every device on the local network.
- A device uses ARP to determine the destination MAC address of a local network device when it knows its IPv4 address.
- The destination MAC address in frame headers are examined in order to forward frames.
- ARP provides two basic functions:
  - Resolving IPv4 addresses to MAC addresses.
  - Maintaining an ARP table of IPv4 to MAC address mappings.





#### **ARP Functions**

- To send a frame, a device will search its ARP table for a destination IPv4 address and a corresponding MAC address.
  - If the packet's destination IPv4 address is on the same network, the device will search the ARP table for the destination IPv4 address.
  - If the destination IPv4 address is on a different network, the device will search the ARP table for the IPv4 address of the default gateway.
  - If the device locates the IPv4 address, its corresponding MAC address is used as the destination MAC address in the frame.
  - If there is no ARP table entry is found, then the device sends an ARP request.
- ARP requests will send the destination MAC address as FFFF.FFFF.



#### **Local ARP Requests**



• This switched network shows the contents of the MAC address table.
PC1 has sent a frame addressed to PC3. What will the switch do with the frame?

The switch will forward the frame to all ports except port 1.



#### Remote ARP Requests



PC1 attempts to connect to the Web Server and sends an ARP request to obtain a destination MAC address. Which MAC address will PC1 receive in the ARP reply?

The MAC address of the G0/0/0 interface on R1 (Default Gateway)



## **ARP Operation**

PC1 issues an ARP request because it needs to send a packet to PC2. What will happen next?

PC2 will send an ARP reply with its MAC address



- PC1 needs to send an ARP to PC3. What will it do?
  - It will send an ARP request for the MAC address of the default gateway



#### Removing Entries from an ARP Table

- Entries in the ARP table are not permanent and are removed when an ARP cache timer expires after a specified period of time.
- The duration of the ARP cache timer differs depending on the operating system.
- ARP table entries can also be removed manually by the administrator.
- If a frame has the broadcast MAC address as the destination address or the destination address is unknown, a switch flood a frame out of every port except the port that the frame was received on.





### **ARP Tables on Networking Devices**

- A static IP-to-MAC address entry can be entered manually into an ARP table.
- The show ip arp command displays the ARP table on a Cisco router.
- All host computers maintain layer 2 addresses in the ARP cache.
  - The arp -a command displays the ARP table on a Windows 10 PC.
  - The arp -d command clears the ARP table cache.



### **ARP Broadcasting**

- On large networks with low bandwidth, multiple ARP broadcasts could cause data communication delays (overhead on the media).
- ARP Broadcasts An ARP request is received and processed by every device on the local network.
  - ARP requests can flood the local segment if a large number of devices were to be powered up and all start accessing network services at the same time.
  - Network attackers could manipulate MAC address and IP address mappings in ARP messages with the intent of intercepting network traffic (security).

ARP broadcasts can flood the local media.





## **ARP Spoofing**

- ARP requests are received and processed by every device on the local network.
- ARP replies can be spoofed by a threat actor to perform an ARP poisoning attack.
- ARP Spoofing A technique that is used to send fake ARP messages to other hosts in the LAN to associate IP addresses with wrong MAC addresses.
  - Attackers can respond to requests and pretend to be providers of services.
  - One type of ARP spoofing attack used by attackers is to reply to an ARP request for the default gateway.
- In this example, host A requests the MAC address of the default gateway:
  - Host C replies to the ARP request.
  - Host A receives the reply and updates its ARP table.
  - It now sends packets destined to the default gateway to the attacker host C.
- Enterprise level switches include mitigation techniques known as dynamic ARP inspection (DAI).





## **Mac-Address-Table Configuration**

- mac-address-table aging-time seconds [10 1000000]
  (default 300)
- mac-address-table static MAC vlan # interface ID

- clear mac-address-table
- show mac-address-table [static | dynamic | aging-time]



## **ARP Tables on Networking Devices**

#### Router

```
Router#show ip arp
                          Age
Protocol Address
                         (min)
                                Hardware Addr
                                                 Type
                                                         Interface
Internet 172.16.233.229
                                0000.0c59.f892
                                                 ARPA
                                                         Ethernet0/0
Internet 172.16.233.218
                                                         Ethernet0/0
                                0000.0c07.ac00
                                                 ARPA
Internet 172.16.168.11
                                0000.0c63.1300
                                                 ARPA
                                                         Ethernet0/0
Internet 172.16.168.254
                                                         Ethernet0/0
                                0000.0c36.6965
                                                 ARPA
```

#### Switch

```
Router# show mac-address-table

Destination Address Address Type VLAN Destination Port

000a.000b.000c Secure 1 FastEthernet0/1/8
000d.e105.cc70 Self 1 Vlan1
00aa.00bb.00cc Static 1 FastEthernet0/1/0
```

PC

```
C: \>arp -a
Interface: 192.168.1.67 --- 0xa
  Internet Address
                        Physical Address
                                              Type
                        64-0f-29-0d-36-91
  192.168.1.254
                                              dynamic
  192,168,1,255
                        ff-ff-ff-ff-ff
                                              static
  224.0.0.22
                        01-00-5e-00-00-16
                                              static
  224.0.0.251
                        01-00-5e-00-00-fb
                                              static
  224.0.0.252
                        01-00-5e-00-00-fc
                                              static
  255,255,255,255
                        ff-ff-ff-ff-ff
                                              static
```



#### 9.3 NEIGHBOR DISCOVERY





#### **IPv6 Neighbor Discovery Messages**

- IPv6 Neighbor Discovery (ND) protocol provides:
  - Address resolution
  - Router discovery
  - Redirection services
- ICMPv6 Neighbor Solicitation (NS) and Neighbor Advertisement (NA) messages are used for device-to-device messaging such as address resolution.
- ICMPv6 Router Solicitation (RS) and Router Advertisement (RA) messages are used for messaging between devices and routers for router discovery.
- ICMPv6 redirect messages are used by routers for better next-hop selection.



#### IPv6 Neighbor Discovery – Address Resolution

- IPv6 devices use ND to resolve the MAC address of a known IPv6 address.
- ICMPv6 Neighbor Solicitation messages are sent using special Ethernet and IPv6 multicast addresses.





# 9.4 Module Practice and Quiz





#### What did I learn in this module?

- Layer 2 physical addresses (i.e., Ethernet MAC addresses) are used to deliver the data link frame with the encapsulated IP packet from one NIC to another NIC on the same network.
- If the destination IP address is on the same network, the destination MAC address will be that of the destination device.
- When the destination IP address (IPv4 or IPv6) is on a remote network, the destination MAC address will be the address of the host default gateway (i.e., the router interface).
- An IPv4 device uses ARP to determine the destination MAC address of a local device when it knows its IPv4 address.



#### What did I learn in this module?

- ARP provides two basic functions: resolving IPv4 addresses to MAC addresses and maintaining a table of IPv4 to MAC address mappings.
- After the ARP reply is received, the device will add the IPv4 address and the corresponding MAC address to its ARP table.
- For each device, an ARP cache timer removes ARP entries that have not been used for a specified period of time.
- IPv6 does not use ARP, it uses the ND protocol to resolve MAC addresses.
- An IPv6 device uses ICMPv6 Neighbor Discovery to determine the destination MAC address of a local device when it knows its IPv6 address.



#### **New Terms and Commands**

- Address Resolution Protocol (ARP)
- ARP table
- show ip arp
- arpr -a
- ICMPv6 Neighbor Discovery protocol (ND)
- ICMPv6 Neighbor Solicitation (NS) message
- ICMPv6 Neighbor Advertisement (NA) message
- ICMPv6 Router Solicitation (RS) message
- ICMPv6 Router Advertisement (RA) message
- ICMPv6 Redirect Message





