Networking and IP Addressing

TELECOMMUNICATIONS AND NETWORKING

Addressing Schemes

FLAT

- 1. Used by Intranetworks
- 2.Used by Layer 2
- 3.Used in MAC address
- 4.Is assigned statically based on next available number or random
 - Social Security Number
 - Your Name
 - MAC- C0:AD:00:23:4F:89

HIERARCHICAL

- 1. Used by Internetworks
- 2.Used by Layer 3
- 3. Used by IP address
- 4.Is assigned dynamically based on your location
 - Phone System
 - ZIP Code
 - IP- 182.157.63.219

Internet Protocol Address (IP Address)

- 1. A unique numerical label assigned to each device participating in a network
- 2. Every device on the Internet must have a unique IP address to identify itself
- 3. Internet Assigned Numbers Authority (IANA)
- 4. Manages the IP address space allocations globally
- 5. Delegates five **regional Internet registries** (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers)
- 6. For an IP to be routable over the Internet, it must have:
 - IP address
 - Subnet Mask
 - Default Gateway
 - DNS address (only for address lookup, i.e. web sites)

Types of Addressing

1.Static IP address

- Manually assigned to a device by an administrator
- Constant and does not change.

2. Dynamic IP address

- Assigned to device each time it starts
- Requires less human intervention
- Less administration
- Uses Dynamic Host Configuration Protocol (DHCP)
- Enabled by default
- No user intervention

Classful vs Classless

CLASSFUL

- 1.Divided into 5 classes A, B, C, D (multicast) and E (reserved)
- 2.Does not send subnet information
- 3.All networks are the same size
- 4. Have the same subnet mask

CLASSLESS

- 1.Also known as CIDR (Classless Inter-Domain Routing)
- 2. Sends subnet information
- 3. Network can be different sizes
- 4. Networks can have different subnet masks using VLSM (Variable Length Subnet Mask)

Network & Host Number Formulas

	1 Byte ← 8 Bits →	1 Byte ← 8 Bits →	1 Byte ← 8 Bits →	1 Byte ◆ 8 Bits →
Class A	N	Н	Н	Н
Class B	N	N	Н	Н
Class C	N	N	N	Н

The formulas are the default configuration for each class:

1.N = Network Number

- Assigned by the American Registry for Internet Numbers (ARIN)
- Administrator has no control over this part of the address

2.H = Host Number

Assigned and controlled by the network administrator

Class A Addresses

- 1. First octet only identifies the network
- 2. When written in a binary format, the first (leftmost) bit of a Class A address is always **0 (zero)**
- 3. Class A IP address example: 124.95.44.15
- 4. Range from **1-126** in their first octet
- 5. 127 is part of a class A range but has been reserved for loopback testing
- 6. Zero (0) can't be used
- 7. Remaining three octets can be used for the host portion of the address
- 8. 2²⁴ or 16,777,216, possible IP addresses per class A network

Class B Addresses

- 1. When written in a binary format, the first (leftmost) bit of a Class B address is always 10 (one and zero)
- 2. Class B IP address example: 151.10.13.28
- 3. The first two octets identify the network number assigned by ARIN
- 4. Range from **128 to 191** in their first octet
- 5. Remaining two octets can be used for the host portion of the address
- 6.2¹⁶ or 65,536, possible IP addresses per class B network

Class C Addresses

- 1. When written in a binary format, the first (leftmost) bit of a Class C address is always 110 (one, one and zero)
- 2. Class C IP address example: 201.110.213.28
- 3. The first three octets identify the network number assigned by ARIN
- 4. Range from **192 to 223** in their first octet
- 5. Last octet can be used for the host portion of the address
- 6.28 or 256, possible IP addresses per class C network

Address Ranges

IMPORTANT!!! MEMORIZE

Class A 1 – 126 N.H.H.H Class B 128 – 191 N.N.H.H Class C 192 – 223 N.N.N.H

Converting to Binary

1.An IP Address is made up of 32 bits broken down into 4 Octets (8 bits each)

2.11000000.00001100.00000101.10101010 or 192.12.5.170

3. Known as the Dotted Decimal

Converting to Binary

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Decimal to Binary

Binary to Decimal

	27	28	25	2*	23	22	21	20
İ	128	64	32	16	8	4	2	1

27	25	25	24	23	22	21	20
128	64	32	16	8	4	2	1

Binary

Network Address

- 1. Ends with binary 0s in all host bits
- 2. Also know as the wire address
- 3. Never used as a device IP address
- 4. Used by routers to forward data
- 5. Example IP address: 152.21.2.3
 - Class B
 - First two octets are assigned
 - Last two octets are host numbers used for devices in the network
 - Network address: 152.21.0.0

Examples of Network Numbers

What is the network number for this IP address?

Broadcast Address

- 1.End with binary 1s in host bits
- 2. Used to send data to all devices on a network
- 3. Never used as a device IP address
- 4.Example IP address: 152.21.2.3
 - Class B address
 - First two octets are assigned
 - Last two octets are host numbers used for devices in the network
 - Broadcast address: 152.21.255.255

Examples of Broadcast Address

What is the Broadcast address for this IP address?

- 2. 117.23.8.3 **117.255.255.255**
- 3. 156.132.64.12 **156.132.255.255**
- 4. 208.150.112.16 **208.150.112.255**
- 5. 91.118.125.2 **91.255.255.255**

Network Number and Broadcast Address

- 1.All 0's in the host address is the Network Number
- 2.All 1's in the host address in the Broadcast Address
- 3. These two addresses can never be used when assigning IP's
- 4. When finding the number of useable host addresses, you will always subtract 2 (network & Broadcast)

Default Subnet Mask

- 1. Formal name: Extended Network Prefix
- 2. Tells the network devices which part of an address is the network field and which part is the host field
- 3.32 bits long and 4 octets, just like an IP address
- 4. Step to determine the subnet mask:
 - Express the subnetwork IP address in binary form
 - Replace the network portion of the address with all 1s
 - Replace the host portion of the address with all 0s
 - Convert the binary expression back to dotted-decimal notation

Examples of Default Subnet Mask

What is the Default Subnet Mask for this IP address?

- 2. 117.23.8.3 **255.0.0.0**
- 3. 156.132.64.12 **255.255.0.0**
- 4. 208.150.112.16 **255.255.255.0**
- 5. 91.118.125.2 **255.0.0.0**

Default Subnet Mask

Class	Formula	Slash Notation	Default Mask
Class A	N.H.H.H	/8	255.0.0.0
Class B	N.N.H.H	/16	255.255.0.0
Class C	N.N.N.H	/24	255.255.255.0

Default Gateway

- 1.A port on a router
- 2. Your connection to the Internet
- 3.IP address **MUST** be part of the network
- 4. Usually the first or last IP address in the network

