IPv4 Subnetting

TELECOMMUNICATIONS AND NETWORKING

Why Subnet?

Before SubnettingNetworkHostAfter SubnettingSubnetHost

- 1.A way of breaking networks into smaller more manageable pieces
- 2. More efficiently use IP addresses
- 3. Reduces the amount of wasted space
- 4. Reduce the size of a broadcast domains
- 5. Better bandwidth utilization

Subnetting

Network	Network	Network	Host	
8 Bits	8 Bits	8 Bits	8 Bits	
27 26 25 24 23 22 21 20	27 26 25 24 23 22 21 20	27 26 25 24 23 22 21 20	2 ⁷ 2 ⁶ 2 ⁵	24 23 22 21 20
11000000 .	00000101 .	00100010 .	000	01011
			Subnet	Host

- 1. Subnet addresses include:
 - The Class A, Class B, or Class C network portion
 - A subnet field
 - A host field
- 2. Subnet field and the host field are created from the original host portion
- 3. Provides addressing flexibility
- 4. To create a subnet address:
 - Network administrator borrows bits from the original host portion
 - Designates them as the subnet field (gives up control)

What is a Subnet Mask?

Convert the binary expression back to dotted-decimal notation

Class B Default Subnet Mask 255.255.0.0

Class B Subnet Mask with 4 bits borrowed 255.255.240.0

1. Formal name: Extended Network Prefix	Nun
2. Tells the network devices which part of an address is the network field and which part is the host field	0- 1-
3.32 bits long and 4 octets, just like an IP address	2-
4. Bits are always borrowed from the left most available bit	
5. Allowed numbers: 255, 254, 248, 240, 224, 192, 128, 0	4-
6. Step to determine the subnet mask:	5-
 Express the subnetwork IP address in binary form 	6-
Replace the network and subnet portion of the address with all 1s	7-
 Replace the host portion of the address with all 0s 	

Allowed

mbers

128

192

224

240

248

252

254

255

Subnet Mask

If you have a class C address:

1. How many bits are used without subnetting?

24 or /24

2. What is the subnet mask?

11111111.111111111.11111111.00000000 or 255.255.255.0

N . N . N . H

3. If you borrowed 4 bits, how many are used?

28 or /28

4. What is the subnet mask?

11111111.11111111.11111111.11110000 or 255.255.255.240

Examples of Subnet Mask

What is the Subnet Mask for this IP address?

- 1. 194.78.112.6/28 **255.255.255.240**
- 2. 117.23.8.3/10 **255.192.0.0**
- 3. 156.132.64.12/20 **255.255.240.0**
- 4. 208.150.112.16/30 **255.255.255.252**
- 5. 91.118.125.2/16 **255.255.0.0**

Useable Subnets and Host

MEMORIZE

1. Formula for calculating **USEABLE Subnets** (borrowed bits):

$$2^{b}$$
 = useable subnets

2. Formula for calculation **USEABLE Hosts** (<u>u</u>nused bits):

$$2^{u}$$
 - 2 = useable hosts

Calculating Subnets and Hosts

Example: Class C network, borrowing 3 bits:

1. What is the subnet mask?

255.255.255.224

2. How many useable subnets?

$$2^{b} = ?$$

$$2^b = ?$$
 $2^3 = 8$ useable subnets

3. How many useable hosts per subnet?

$$2^{u}-2=?$$

$$2^{u}-2=$$
? 2^{5} (32) - 2 = 30 useable hosts

Possible number of hosts

Boolean Operations

- 1. The term "operations" in mathematics refers to rules that define how one number combines with other numbers
- 2.Boolean operators for binary numbers:
 - **AND** is like multiplication
 - **OR** is like addition
 - NOT changes 1 to 0, and 0 to 1
- NAND is the AND with a reversed outcome
 - NOR is the OR with a reversed outcome
- 3.In order to route a data packet, the router must first determine the destination network/subnet address by performing a logical **AND** using the destination host's IP address and the subnet mask
- 4. Result will be the network/subnet/wire address

ANDing

Find the network address for this class B IP:

1.180.160.120.8/18

```
2. What the subnet mask?
```

3. Change IP to binary

4. Change SM to binary

5.AND function

6.Convert back to decimal

7. Network address

255.255.192.0

10110100.10100000.01111000.00001000

1111111.1111111.11000000.0000000

10110100.10100000.01000000.00000000

180.160.64.0

Classful Subnetting

THINGS YOU KNOW BY DEFAULT:

- 1.Class
- 2.Formulas
- 3.Default Mask

THINGS YOU MUST ALWAYS FIND OUT FIRST BEFORE FINDING YOUR IP'S:

- **1.**Bits Borrowed
- 2. Number of subnets
- 3. Numbers of hosts
- 4.Subnet Mask
- 5.Increment (Possible number of hosts)

An IP address of 196.112.48.0 with the most hosts:

1.Bits Borrowed

1

2.Subnet Mask

255.255.255.128

3. Number of subnets

 $2^1 = 2$ useable

4. Numbers of hosts

 2^{7} (128) - 2 = 126 useable

5.Increment

128

An IP address of 196.112.48.0 with 2 bits borrowed would have:

1.Bits Borrowed 2

2.Subnet Mask 255.255.255.192

3. Number of subnets $2^2 = 4$ useable

4. Numbers of hosts 2^6 (64) - 2 = 62 useable

5.Increment 64

An IP address of 196.112.48.0/27:

1.Bits Borrowed 3

2.Subnet Mask 255.255.254

3. Number of subnets $2^3 = 8$ useable

4. Numbers of hosts 2^5 (32) - 2 = 30 useable

5.Increment 32

A class C address 196.112.48.12 with 4 bits borrowed would have:

1.Bits Borrowed

4

2.Subnet Mask

255.255.255.240

3. Number of subnets

 $2^4 = 16$ useable

4. Numbers of hosts

 2^4 (16) - 2 = 14 useable

5.Increment

16

An IP address of 196.112.48.0/29:

1.Bits Borrowed

2.Subnet Mask **255.255.255.248**

3. Number of subnets $2^5 = 32$ useable

4. Numbers of hosts 2^3 (8) - 2 = 6 useable

5.Increment

An IP address of 196.112.48.0 with the most subnets:

1.Bits Borrowed

6

2.Subnet Mask

255.255.255.252

3. Number of subnets

 $2^6 = 64$ useable

4. Numbers of hosts

 2^{2} (4) - 2 = 2 useable

5.Increment

4

Class C Subnetting Bits

Formula = N.N.N.H

Default Slash = /24

Default Mask = 255.255.255.0

Bits Borrowed	1	2	3	4	5	6
Slash Notation	/25	/26	/27	/28	/29	/30
Subnet Mask	255.255.255.128	255.255.255.192	255.255.255.224	255.255.255.240	255.255.255.248	255.255.255.252
Number of subnets	2	4	8	16	32	64
Numbers of Usable hosts	126	62	30	14	6	2
Increment	128	64	32	16	8	4

Class C Subnetting Chart

196.112.48.0/26 Class C N.N.N.H 255.255.255.0

Subnet Number	Network Address	Useable Range	Broadcast Address
SN0	196.112.48. 0	196.112.48. 1 – 196.112.48. 62	196.112.48. 63
SN1	196.112.48. <mark>64</mark>	196.112.48. 65 – 196.112.48. 126	196.112.48. 127
SN2	196.112.48. 128	196.112.48. 129 – 196.112.48. 190	196.112.48. 191
SN3	196.112.48. 192	196.112.48. 193 – 196.112.48. 254	196.112.48. 255

Subnetting Fundamentals

Class	Range	Formula	Default Mask
A	0-126	N.H.H.H	255.0.0.0
В	128-191	N.N.H.H	255.255.0.0
C	192-223	N.N.N.H	255.255.255.0

- 1. Determine the Class of each given
- 2. Determine how many bits you must borrow (if applicable).
- 3. Determine the usable number of subnets.

4. Determine how many possible number and usable number of hosts.

$$2^{(U)} - 2 = U$$
sable Hosts

- 5. Determine the Default Mask.
- 6. Determine the Subnet Mask.
- 7. Determine the increment. (Increment = Possible Number of Hosts)
- 8. Determine the network and broadcast address for each subnetwork.
- 9. Determine the usable range for each subnetwork.

Private Addresses

The following rages are available for private addressing:			
Class A	10.0.0.0 - 10.255.255.255		
Class B	172.16.0.0 - 172.31.255.255		
Class C	192.168.0.0 - 192.168.255.255		

- 1. Found in each class
- 2. Preserve IP addresses used on the Internet
- 3. Not routable or useable on the Internet
- 4. Added security
- 5.Used by:
 - Hosts that use network address translation (NAT)
 - Proxy server to connect to a public network
 - Hosts that do not connect to the Internet at all

Automatic Private IP Addressing (APIPA)

- 1. Feature of modern operating systems
- 2. Automatically self-configures an IP address and subnet mask when a DHCP server isn't available
- 3.IP address range: 169.254.0.1 through 169.254.255.254
- 4. Configures a default class B subnet mask of 255.255.0.0
- 5. Used until a DHCP becomes available
- 6.APIPA cannot be routed over the Internet