
DEVASCv1 1

Module 3: Software
Development and Design

DEVASCv1 2

Module Objectives
 Module Title: Software Development and Design
 Module Objective: Use software development and design best practices.
 It will comprise of the following sections:

Topic Title Topic Objective
3.1 Software Development Compare software development methodologies.

3.2 Software Design Patterns Describe the benefits of various software design patterns.

3.3 Version Control Systems Implement software version control using GIT.

3.4 Coding Basics Explain coding best practices.

3.5 Code Review and Testing Use Python Unit Test to evaluate code.

3.6 Understanding Data Formats Use Python to parse different messaging and data formats.

DEVASCv1 3

3.1 Software Development

DEVASCv1 4

Introduction
 The software development process is also known as the software development

life cycle (SDLC).
 SDLC is more than just coding and also includes gathering requirements, creating

a proof of concept, testing, and fixing bugs.

DEVASCv1 5

Software Development Life Cycle (SDLC)
 SDLC is the process of developing software, starting from an idea and ending with

delivery. This process consists of six phases. Each phase takes input from the
results of the previous phase.
 SDLC is the process of developing software, starting

from an idea and ending with delivery. This process
consists of six phases. Each phase takes input from
the results of the previous phase.
 Although the waterfall methods is still widely used

today, it's gradually being superseded by more
adaptive, flexible methods that produce better
software, faster, with less pain. These methods are
collectively known as “Agile development.”

DEVASCv1 6

Requirements and Analysis Phase
 The requirements and analysis phase involves the product owner and qualified team

members exploring the stakeholders' current situation, needs and constraints, present
infrastructure, and so on, and determining the problem to be solved by the software.
 After gathering the requirements, the team analyzes the results to determine the following:

- Is it possible to develop the software according to these requirements, and can it be
done on-budget?

- Are there any risks to the development schedule, and if so, what are they?
- How will the software be tested?
- When and how will the software be delivered?

 At the conclusion of this phase, the classic waterfall method suggests creating a Software
Requirement Specification (SRS) document, which states the software requirements and
scope, and confirms this meticulously with stakeholders.

DEVASCv1 7

Design and Implementation Phases
 Design

• During the Design phase, the software architects and developers design the
software based on the provided SRS.

• At the end of the phase, the team creates High-Level Design (HLD) and Low-
Level Design (LLD) documents.

 Implementation
• The implementation phase is also called the coding or development phase.
• it is the longest phase of the life cycle.
• As all the components and modules are built during this phase according to low-

level and high-level design documents.
• At the end of the phase, the functional code that implements all customer's

requirements is ready to be tested.

DEVASCv1 8

Testing, Deployment, and Maintenance Phases
 Testing

• In this phase, code is installed in the test environment
• Functional testing, integration testing, performance testing and security testing is

performed.
• Testing continues until all the codes are bug free and pass all the tests. At the

end of this phase, a high quality, bug-free, working piece of software is ready for
production.

 Deployment
• During this phase, the software is installed into the production environment.
• At the end of the phase, the product manager releases the final piece of

software to end users.

DEVASCv1 9

Testing, Deployment, and Maintenance Phases
 Maintenance

• During the maintenance phase, the team:
- Provides support to customers
- Fixes bugs found in production
- Works on software improvements
- Gathers new requests from the customer

• At the end, the team works on the next iteration and version of the software.

DEVASCv1 10

Software Development Methodologies
 A software development methodology is also known as Software Development

Life Cycle model.
 The three most popular methodologies are:

• Waterfall
• Agile
• Lean
 The type of methodology to be used depends on the:

• Type of the project
• Length of the project
• Size of the team.

DEVASCv1 11

Waterfall Software Development
 The original waterfall model was created by Winston W. Royce.
 His original model consisted of seven phases:

• System requirements
• Software requirements
• Analysis
• Program design
• Coding
• Testing
• Operations
 Note: Each phase cannot overlap and must be completed before the next step

starts.

DEVASCv1 12

Agile Software Development
 Agile method is flexible and customer-focused.
 A group of 17 software developers came up with the Manifesto for Agile Software

Development, also known as the Agile Manifesto, in 2001. According to the Agile
Manifesto, the values of Agile are:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
 The Agile manifesto lists 12 different principles:

Agile Manifesto Principles
Customer focus Collaboration Working software Simplicity

Embrace change and adapt Motivated teams Work at a sustainable
pace

Self-organizing teams

Frequent delivery of working
software

Face-to-face
conversations

Agile environment Continuous
Improvement

DEVASCv1 13

Agile Methods
 The popular Agile methods are:

• Agile Scrum: The Scrum focuses on small, self-organizing teams that meet
daily for short periods and work in iterative sprints.

• Lean: The Lean method emphasizes on elimination of wasted effort in planning
and execution, and reduction of programmer cognitive load.

• Extreme Programming (XP): XP deliberately addresses the specific kinds of
quality-of-life issues faced by the software development teams.

• Feature-Driven Development (FDD): FDD prescribes that software
development should proceed in terms of an overall model, broken out, planned,
designed, and built feature-by-feature.

DEVASCv1 14

Agile Methods
• Sprints

• A sprint is a specific period of time, usually between 2-4 weeks, during which,
each team takes on as many tasks (also known as user stories) as they feel
they can accomplish. When the sprint is over, the software should be working
and deliverable.

• The duration of the sprint is determined before the process begins and should
rarely change.

• Backlog
• The backlog consists of all the features of the software, in a prioritized list.

DEVASCv1 15

Agile Methods
• User stories

• A user story is a simple statement of what a user (or a role) needs, and
why. Each user story should be small enough that a single team can finish it
within a single sprint.

• The suggested template for a user story is:
As a <user|role>, I would like to <action>, so that <value|benefit>

DEVASCv1 16

Agile Methods
 Scrum Teams

• Scrum teams are cross-functional, collaborative, self-managed and self-
empowered.

• The scrum teams should not be larger than 10 individuals.
• The scrum master should have a daily stand-up meeting with the team at a fixed

time everyday for not more than 15 minutes.
• The goal is to go over important tasks that have been finished, are in progress,

or are about to be started.

DEVASCv1 17

Lean Software Development
 Lean software development is based on Lean Manufacturing principles, which are

focused on minimizing waste and maximizing value to the customer.
 The customer determines the useful value of software product features.
 The seven principles of lean, given in the book “Lean Software Development: An

Agile Toolkit,” are as follows:
• Eliminate waste
• Amplify learning
• Decide as late as possible
• Deliver as fast as possible
• Empower the team
• Build integrity in
• Optimize the whole

DEVASCv1 18

Lean Software Development
 Eliminate waste

• It is the most fundamental lean principle.
• There are seven wastes of software development:

- Partially done work
- Extra processes
- Extra features
- Task switching

• Waiting
• Motion
• Defects

DEVASCv1 19

Lean Software Development
 Amplify Learning with Short Sprints

• To be able to fine tune a software, there should be frequent short iterations of
working software. This enables the following:

 Developers learn faster
• Customers can give feedback sooner
• Features can be adjusted so that they bring customers more value
 Decide as Late as Possible

• When there is uncertainty, it is best to delay the decision-making until as late as
possible in the process. This is because it is better to base decisions on facts
rather than opinions or speculations.

DEVASCv1 20

Lean Software Development
 Deliver as Fast as Possible

• Enables customers to provide feedback
• Enables developers to amplify learning
• Provides customers the required features
• Doesn't allow customers to change their mind
• Makes everyone take decisions faster
• Produces less waste

DEVASCv1 21

Lean Software Development
 Empower the Team

• Each person must be allowed to make decisions in the area of their own
expertise.

 Build Integrity In
• Integrity for the software is when the software addresses the customer’s needs

as well as maintains the usefulness for the customer.
 Optimize the Whole

• The software must be built cohesively. The value of the software will suffer if
each expert only focuses on their expertise and doesn't consider the
ramifications of their decisions on the rest of the software.

DEVASCv1 22

Explore Python Development Tools
 Enter the following command to use the venv tool to create a Python 3 virtual

environment with the name devfund. The –m switch tells Python to run the venv
module.
python3 -m venv devfund
 Run the pip3 freeze command to output a list of installed Python packages and

verify that there are no additional Python packages currently installed in the
environment.
pip3 freeze

 Note: We will discuss data formats in more detail later.

DEVASCv1 23

3.2 Software Design
Patterns

DEVASCv1 24

Introduction
 Software design patterns are best practice solutions for solving common problems

in software development.
 Design patterns are language-independent.
 In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (known

as the Gang of Four (GoF)) published a book called Design Patterns - Elements of
Reusable Object-Oriented Software. Patterns identified are:
• Program to an interface, not an implementation.
• Favor object composition over class inheritance.
 Software design patterns have already been proven to be successful, so using

them can speed up development.

DEVASCv1 25

The Original Design Patterns
 The Gang of Four divided patterns into three main categories:

• Creational
• Structural
• Behavioral
 They listed 23 design patterns.
 Two of the most commonly used design patterns are:

• The Observer design pattern (a Behavioral design pattern)
• The Model-View-Controller (MVC)

DEVASCv1 26

Observer Design Pattern
 The observer design pattern is a subscription

notification design that lets objects receive events when there are changes to an
object they are observing.
 To implement this subscription mechanism:

• The subject must have the ability to store
a list of all of its observers.

• The subject must have methods to add and
remove observers.

 The benefit of the observer design pattern is that observers can get real time data
from the subject when a change occurs.
 Subscription mechanisms always provide better performance than other options,

such as polling.

DEVASCv1 27

Model-View-Controller (MVC)
 The Model-View-Controller (MVC) design pattern aims to

simplify development of applications that depend on graphic user interfaces.
 MVC abstracts code and responsibility into three different

components:
• Model: The model is the application's data structure

and is responsible for managing the data, logic and
rules of the application. It gets input from the controller.

• View: It accepts selected data and displays the visual
representation to the user.

• Controller: The controller is the middleman between the model and view. It
takes in user input and manipulates it to fit the format for the model or view.

 The benefit of MVC is that each component can be built in parallel.

DEVASCv1 28

3.3 Version Control
Systems

DEVASCv1 29

Types of Version Control Systems
 Version control, also called version control systems, revision control or source

control, is a way to manage changes to a set of files in order to keep a history of
those changes.
 Benefits of version control are:

• Enables collaboration
• Accountability and visibility
• Work in isolation
• Safety
• Work anywhere
 There are three types of version control systems:

• Local
• Centralized
• Distributed

DEVASCv1 30

Types of Version Control Systems
 Local Version Control System (LVCS)

• LVCS uses a simple database to keep track of all of the changes to the file.
• In most cases, the system stores the delta

between the two versions of the file.
• When the user wants to revert to the file, the delta is reversed to get to the

requested version.

DEVASCv1 31

Types of Version Control Systems
 Centralized Version Control System (CVCS)

• CVCS uses a server-client model.
• The repository is stored in a centralized location, on a server.
• In CVCS, only one individual can work on a

particular file at a time.
• An individual must check out the file to lock

it and make the required changes and
check in once done.

DEVASCv1 32

Types of Version Control Systems
 Distributed Version Control System (DVCS)

• DVCS is a peer-to-peer model.
• The repository can be stored on a client system, but it is usually stored in a

repository hosting service.
• In DVCS, every individual can work on any file, at the same time, because the

local file in the working copy is being modified. Hence, locking is not required.
• When the individual has made the

changes, they push the file to the main
repository that is in the repository hosting
service, and the version control system
detects any conflicts between file
changes.

DEVASCv1 33

Git
 Git is an open source implementation of a distributed version control system that

is currently the latest trend in software development.
 A Git client must be installed on a client machine. It is available for MacOS,

Windows, and Linux/Unix.
 One key difference between Git and other version control systems is that Git

stores data as snapshots instead of differences (the delta between the current file
and the previous version).

 If the file does not change, Git uses a reference link to the last snapshot in the
system instead of taking a new and identical snapshot.

DEVASCv1 34

Git
 Git is organized by 3s- three stages and three states.
 The three stages are:

• Repository (the .git directory)
• Working directory
• Staging area
 The three states are:

• Committed
• Modified
• Staged

DEVASCv1 35

Local vs. Remote Repositories
 Git has two types of repositories:

• A local repository is stored on the file system of a client machine, which is the
same one on which the git commands are being executed.

• A remote repository is stored somewhere other than the client machine,
usually a server or repository hosting service.

• A remote repository with Git continues to be a DVCS because the remote
repository will contain the full repository, which includes the code and the file
history.

 When a client machine clones the repository, it gets the full repository without
requiring to lock it, as in a CVCS.
 After the local repository is cloned from the remote repository or the remote

repository is created from the local repository, the two repositories are
independent of each other until the content changes are applied to the other
branch through a manual Git command execution.

DEVASCv1 36

What is Branching?
 Branching enables users to work on code independently without affecting the

main code in the repository. When a repository is created, the code is
automatically put on a branch called Master.
 Branches can be local or remote, and they can be deleted and have their own

history, staging area, and working directory.
 Git's branch creation is lightweight, and

switching between branches is almost
instantaneous.
 When a user goes from one branch to another,

the code in their working directory and the files
in the staging area change accordingly, but
the repository (.git) directories remain
unchanged.

DEVASCv1 37

GitHub and Other Providers
 Git and GitHub are not the same.
 While Git is an implementation of distributed version control and provides a command

line interface, GitHub is a service provided by Microsoft that implements a repository
hosting service with Git.
 In addition to providing the distributed version control and source code management

functionality of Git, GitHub provides additional features such as:
• code review
• documentation
• project management
• bug tracking
• feature requests
 GitHub introduced the concept of the ‘pull request’, which is a way of formalizing a

request by a contributor to review changes such as new code, edits to existing code,
etc., in the contributor's branch for inclusion in the project's main or other curated
branches.

DEVASCv1 38

Git Commands
 Setting up Git
 To configure Git, use the --global option to set the initial global settings.
git config --global key value
 Create a New Git Repository

• Git provides a git init command to create an
empty Git repository, or make an existing folder a
Git repository.

• When a new or existing project becomes a Git
repository, a hidden .git directory is created in
that project folder.

• The .git directory is the repository that holds the
metadata such as the compressed files, the commit
history, and the staging area. In addition, Git also
creates the master branch.

DEVASCv1 39

Git Commands
 Start a new repository

• Creates an empty Git repository or makes an existing folder a Git repository.
$ git init <project directory>
• where the <project directory> is the absolute or relative path to the new or

existing project.
• For a new Git repository, the directory in the provided path will be created first,

followed by the creation of the .git directory.
 Get an Existing Git Repository
$ git clone <repository> [target directory]
• where <repository> is the location of the

repository to clone.
 Git supports four major transport protocols

for accessing the <repository>: Local,
Secure Shell (SSH), Git, and HTTP.

DEVASCv1 40

Git Commands
 View the Modified Files in the Working Directory

• Git provides a git status command to get a list of files that have differences
between the working directory and the parent branch.

$ git status

 Compare Changes Between Files
• Git provides a git diff command that is essentially a generic file comparison tool.
$ git diff
• When using the git diff command, the file does not need to be a Git tracked file.

DEVASCv1 41

Adding and Removing Files
 Adding Files to the Staging Area

• This command can be used more than once before the Git repository is updated
(using commit).

• Only the files specified in the git command can be
added to the staging area

• To add a single file to the staging area:
$ git add <file path>

• To add multiple files to the staging area, where the <file
path> is the absolute or relative path of the file to be
added to the staging area.
$ git add <file path 1> ... <file path n>

• To add all the changed files to the staging area:
$ git add

DEVASCv1 42

Adding and Removing Files
 Removing Files from the Git Repository
 There are two ways to remove files from the Git repository:

• Option 1: git rm command is used to remove files from the Git repository and
add to the staging area.
$ git rm
- To remove the specified file(s) from the working directory

and add the change to the staging area, use the
following command:
$ git rm <file path 1> ... <file path n>

- where <file path> is the absolute or relative path of
the file to be deleted from the Git repository.

DEVASCv1 43

Adding and Removing Files
• To add the specified file(s) to be removed from the staging area without

removing the file(s) itself from the working directory, use the following command:
$ git rm --cached <file path 1> ... <file path n>
- The git rm command will not work if the file is already in the staging area

with changes.
• Option 2: This option is a two-step process. First use the regular filesystem

command to remove the file(s) and then add the file to the stage using the Git
command.
$ rm <file path 1> ... <file path n>
$ git add <file path 1> ... <file path n>
- This two-step process is equivalent to using the git rm <file path 1> ...
<file path n> command. Using this option does not allow the file to be
preserved in the working directory.

DEVASCv1 44

Updating Repositories
 Updating the Local Repository with the Changes in the Staging Area

• This command combines all the content changes in the staging area into a
single commit and updates the local Git repository.

• To commit the changes from the staging area, use the following command:
$ git commit

• To commit the changes from the staging area with a
message, use the following command:
$ git commit -m "<message>"

DEVASCv1 45

Updating Repositories
 Updating the Remote Repository

• Updates the remote Git repository with the content changes from the local Git
repository.

$ git push
• This command will not execute successfully if there is a conflict with adding the

changes from the local Git repository to the remote Git repository.
• To update the contents from the local repository

to a particular branch in the remote repository,
use the following command:
$ git push origin <branch name>

• To update the contents from the local repository
to the master branch of the remote repository,
use the command:
$ git push origin master

DEVASCv1 46

Updating Repositories
 Updating Your Local Copy of the Repository

• Local copies of the Git repository do not automatically get updated when another
contributor makes an update to the remote Git repository.

• Updating the local copy of the repository is a manual step.
$ git pull

• When executing the command, the following steps occur:
- The local repository (.git directory) is updated with the latest commit, file

history, and so on from the remote Git repository.
- The working directory and branch is updated with the latest content from step

1.
- A single commit is created on the local branch with the changes from step 1.
- The working directory is updated with the latest content.

DEVASCv1 47

Updating Repositories
 To update the local copy of the Git repository from the parent branch, use

the following command:
$ git pull
Or
$ git pull origin
 To update the local copy of the Git repository from a specific branch, use the

following command:
$ git pull origin <branch>

DEVASCv1 48

Branching Features
 Creating and Deleting a Branch

• Option 1: git branch command to list, create, or delete a branch.
$ git branch <parent branch> <branch name>

• Option 2: git checkout command to switch branches by updating the working
directory with the contents of the branch.
$ git checkout -b <parent branch> <branch name>

 Deleting a Branch
• To delete a branch, use the following command:
$ git branch -d <branch name>

 Get a List of all Branches
• To get a list of all the local branches, use the following command:
$ git branch or $ git branch --list

DEVASCv1 49

Branching Features
 Merging Branches

• Branches diverge from one another when they are modified after they are
created.

• When Git merges the branch, it takes the changes/commits from the source
branch and applies it to the target branch.

• During a merge, only the target branch is
modified.

• The source branch is untouched and
remains the same.

DEVASCv1 50

Branching Features
 Fast-Forward Merge

• A fast-forward merge is when the Git algorithm is able to apply the
changes/commits from the source branch(es) to the target branch automatically
and without any conflicts.

 Merge Conflicts
• A merge conflict is when Git is not able to perform a fast-forward merge because

it does not know how to automatically apply the changes from the branches
together for the file(s).

DEVASCv1 51

Branching Features
 Performing the Merge

• Git provides a git merge command to join two or more branches together.
$ git merge
To merge a branch into the client's current branch/repository, use the below
command:
$ git merge <branch name>
To merge a branch into a branch that is not the client's current
branch/repository, use the following command:
$ git checkout <target branch name>
$ git merge <source branch name>

• To merge more than one branch into the client's current branch/repository, use
the below command:
$ git merge <branch name 1>...<branch name n>

DEVASCv1 52

.diff Files
 A .diff file is used to show how two different versions of a file have changed.
 By using specific symbols, this file can be read by other systems to interpret how

files can be updated.
 The symbols and meanings in a unified diff file are:

Symbol Meaning
+ Indicates that the line has been added.

- Indicates that the line has been removed.

/dev/null Shows that a file has been added or removed.

or "blank" Gives context lines around changed lines.

@@ A visual indicator that the next block of information is starting.
Within the changes for one file, there may be multiple.

index Displays the commits compared.

DEVASCv1 53

3.4 Coding Basics

DEVASCv1 54

Methods, Functions, Modules, and Classes
 As the project size and complexity grows, and other developers (and

stakeholders) get involved, disciplined methods and best practices are needed to
help developers write better code and collaborate around it more easily.

DEVASCv1 55

Clean Code
 Clean codes are the result of developers trying to make their code easy to read

and understand for other developers.
 Clean codes emphasize on standardization, proper organization, modularity,

providing inline comments and other characteristics that help make code self-
documenting.
 They follow some common principles related to formatting, organization,

intuitiveness of components, purpose and reusability.
 Reasons why developers want to write clean code:

• Easier to understand, more compact, and better-organized.
• Modular and tends to be easier to test using automated methods such as unit

testing frameworks.
• Standardized and is easier to scan and check using automated tools.
• It simply looks nicer.

DEVASCv1 56

Methods and Functions
 Methods and Functions are blocks of code that perform tasks when executed.
 Functions are standalone code blocks whereas methods are code blocks

associated with an object.
 Following are some standard best-practices for determining whether a piece of

code should be encapsulated (in a method or function):
• Code that performs a discrete task, even if it happens only once, may be a

candidate for encapsulation.
• Task code that is used more than once should probably be encapsulated.
 Methods and Functions can be written once and executed as many times as

required.
 If used correctly, methods and functions will simplify the

code, and reduce the potential for bugs.
 Syntax of a Function in Python:

DEVASCv1 57

Methods and Functions
 Arguments and Parameters

• Arguments and parameters add flexibility to methods and functions.
• Syntax of a function using arguments and parameters in Python:

DEVASCv1 58

Methods and Functions
 Return Statements

• The return statement refers to the return value that is specified using the
keyword return followed by a variable or expression. A return statement ends the
execution of a function and returns control to the calling function.

• When a return statement is executed, the value of the return statement is
returned and any code below it gets skipped.

• Syntax of a function with a return statement in Python:

DEVASCv1 59

Methods and Functions
 Methods vs. Functions

Methods Functions
Methods are code blocks
associated with an object, typically
for object-oriented programming.
The function is packaged in a
single Python file.

Functions are standalone code
blocks.

DEVASCv1 60

Modules
 Developers typically use modules to divide a large project into smaller parts so

that the code can be read and understood easily.
 They consists of a set of functions and typically contains an interface for other

modules to integrate with.
 A module is packaged as a single file and is expected to work independently.
 Below is a module with a set of functions saved in a script called circleClass.py.

DEVASCv1 61

Classes
 In most Object-Orient Programming (OOP) languages, and in Python, classes are

a means of bundling data and functionality. Each class declaration defines a new
object type.
 Classes may have class variables and object variables.
 New classes may be defined, based on existing, previously defined classes, so

that they inherit the properties, data members, and functionality (methods).
 A class may be instantiated (created) multiple times, and each with its own object-

specific data attribute values.
 Note: Unlike other OOP languages, in Python,

there is no means of creating 'private' class
variables or internal methods. However, by
convention, methods and variables with a single
preceding underscore (_) are considered private
and not to be used or referenced outside the class.

>>> class Url():

... def __init__(self, host, prot):

... self.host = host

... self.prot = prot

... self.url = self.prot + "://" + self.host

...

>>> url2 = Url('www.cisco.com', 'http')

DEVASCv1 62

3.5 Code Review and
Testing

DEVASCv1 63

What is a Code Review and Why Should You Do This?
 A code review is when developers look over the codebase, a subset of code, or

specific code changes and provide feedback. These developers are often called
reviewers.
 The code review process only happens after the code changes are complete and

tested.
 The goal of code reviews is to make sure that the final code:

• Is easy to read
• Is easy to understand
• Follows coding best practices
• Uses correct formatting
• Is free of bugs
• Has proper comments and documentation
• Is clean

DEVASCv1 64

Types of Code Reviews
 The most common types of code review processes include:

• Formal code review: Developers have a series of meetings to review the whole
codebase. It promotes discussion among all the reviewers.

• Change-based code review: Also known as a tool-assisted code review,
reviews code that was changed as a result of a bug, user story, feature, commit,
and so on.

• Over-the-shoulder code review: A reviewer looks over the shoulder of the
developer who wrote the code and provides feedback.

• Email pass-around: It can occur following the
automatic emails sent by the source code
management systems when a checkin is made.

DEVASCv1 65

Testing
 Software testing is classically subdivided into two general categories:

• Functional testing seeks to determine whether the software works correctly.
Does it behave as intended in a logical sense, from the lowest levels of detail
examined with Unit Testing, to higher levels of complexity explored in Integration
Testing?

• Non-functional testing examines usability, performance, security, resiliency,
compliance, localization, and many other issues. This type of testing finds out if
the software is fit for its purpose, provides the intended value, and minimizes
risk.

 Developers capture design requirements as tests and then write software to pass
those tests. This is called Test-Driven Development (TDD).

DEVASCv1 66

Unit Testing
 Detailed functional testing of small pieces of code (lines, blocks, functions,

classes, and other components in isolation) is called Unit Testing.
 These test frameworks are software that allows you to make assertions about

testable conditions and determine if these assertions are valid at a point in
execution.
 Examples of test frameworks for Python:

PyTest unittest

• PyTest is handy. It automatically executes any scripts
that start with test_ or end with _test.py and within
those scripts, automatically executes any functions
beginning with 'test_' or 'tests_'.

• We can unit test a piece of code by copying it into a
file, importing pytest, adding appropriately-named
testing functions, saving the file under a filename that
also begins with 'tests_,' and running it with PyTest.

• The unittest framework demands a different syntax
than PyTest.

• For unittest, you need to subclass the built-in
TestCase class and test by overriding its built-in
methods or adding new methods whose names begin
with 'test_'.

DEVASCv1 67

Integration Testing
 Integration testing ensures that all the individual units fit together properly to make

a complete application.
 Running the code with PyTest produces an output as shown in the image:

 Note: You can run this script on your VM using pytest. However, understanding
the output and fixing any errors is beyond the scope of this course.

DEVASCv1 68

Test-Driven Development (TDD)
 If you want to test to validate the application design in light of requirements,

implies that you should write the testing code before you write the application
code .
 Having expressed the requirements in your testing code, you can then write the

application code until it passes the tests that you have created in the testing code.
 The basic pattern of TDD is a five-step, repeating process:

• Create a new test.
• Run tests to see if any fail for unexpected reasons.
• Write application code to pass the new test.
• Run tests to see if any fail.
• Refactor and improve application code.

DEVASCv1 69

3.6 Understanding Data
Formats

DEVASCv1 70

Data Formats
 Rest APIs let you exchange information with remote services and equipment.
 The three most popular standard formats for exchanging information with remote APIs are

XML, JSON, and YAML.
 Parsing XML, JSON, or YAML is a frequent requirement of interacting with APIs. An oft-

encountered pattern in REST API implementations is as follows:
• Authenticate, usually by POSTing a user/password combination and retrieving an expiring

token for use in authenticating subsequent requests.
• Execute a GET request to a given endpoint (authenticating as required) to retrieve the

state of a resource, requesting XML, JSON, or YAML as the output format.
• Modify the returned XML, JSON, or YAML.
• Execute a POST (or PUT) to the same endpoint (again, authenticating as required) to

change the state of the resource, again requesting XML, JSON, or YAML as the output
format and interpreting it as needed to determine if the operation was successful.

DEVASCv1 71

XML
 Extensible Markup Language (XML) is a generic methodology for wrapping

textual data in symmetrical tags to indicate semantics.
 It is a derivative of Structured, Generalized Markup Language (SGML), and also

the parent of HyperText Markup Language (HTML). XML filenames typically end
in ".xml".
 An Example XML Document

DEVASCv1 72

XML
 XML Document Body: Except the first two lines of a XML document, the

remainder of the document is considered as the body.
 User-Defined Tag Names: XML tag names are user-defined. If you are

composing XML for your own application, pick tag names that clearly express the
meaning of data elements, their relationships, and hierarchy.
 Special Character Encoding: Data is conveyed in XML as readable text.
 XML Prologue: The XML prologue is the first line in an XML file.
 Comments in XML: XML files can include comments, using the same

commenting convention used in HTML documents.
 XML Attributes: XML lets you embed attributes within tags to convey additional

information.

DEVASCv1 73

XML
 XML Namespaces:

• Namespaces are defined by the IETF and other internet authorities,
organizations, and other entities, and their schemas are typically hosted as
public documents on the web.

• Namespaces are identified by Uniform Resource Names (URIs) to make
persistent documents reachable without the seeker needing to be concerned
about their location.

• The code example below shows the use of a namespace, defined as the value
of an xmlns attribute, to assert that the content of an XML remote procedure call
should be interpreted according to the legacy NETCONF 1.0 standard.

DEVASCv1 74

XML
 Interpreting XML

• In the XML Namespaces example, the structure is represented as a list or one-
dimensional array (called 'instances') of objects (each identified as an 'instance'
by bracketing tags). Each instance object contains two key-value pairs denoting
a unique instance ID and VM server type.

• A semantically-equivalent Python data structure might be declared as shown
below:

DEVASCv1 75

JSON
 JSON, or JavaScript Object Notation, is a data format derived from the way

complex object literals are written in JavaScript.
 JSON filenames typically end in “.json.”
 Below is a sample JSON file, containing two values that are text strings, one is a

boolean value, and two are arrays:

DEVASCv1 76

JSON
 JSON Basic Data Types: JSON basic data types include numbers, strings,

Booleans, or nulls.
 JSON Objects: As in JavaScript, individual objects in JSON comprise of

key/value pairs, which may be surrounded by curly braces { }, individually.
 JSON Maps and Lists: In this case, each individual key/value pair does not need

its own set of brackets, but the entire object does. JSON compound objects can
be deeply-nested, with complex structure. It can also express JavaScript ordered
arrays (or 'lists') of data or objects.
 No Comments in JSON: Unlike XML and YAML, JSON does not support any

kind of standard method for including unparsed comments in code.
 Whitespace Insignificant: Whitespace in JSON is not significant, and files can

be indented using tabs or spaces as preferred, or not at all.

DEVASCv1 77

YAML
 YAML Ain't Markup Language (YAML) is a superset of JSON designed for even

easier human readability.
 As a superset of JSON, YAML parsers can generally parse JSON documents (but

not vice-versa).
 Hence, YAML is better than JSON at certain tasks, including the ability to embed

JSON directly (including quotes) in YAML files.

DEVASCv1 78

YAML
 YAML File Structure: YAML files conventionally open with three dashes (---

alone on a line) and end with three dots (... likewise).
 YAML Data Types: YAML basic data types include numbers, strings, Booleans,

or nulls.
 Basic Objects: In YAML, basic data types are equated to keys.
 YAML Indentation and File Structure: YAML indicates its hierarchy using

indentation.
 Maps and Lists: YAML easily represents more complex data types, such as

maps containing multiple key/value pairs and ordered lists.
• Maps are generally expressed over multiple lines, beginning with a label key and

a colon (:), followed by members, indented on subsequent lines:

DEVASCv1 79

YAML
 Lists (arrays) are represented with optionally-indented members preceded by a

single dash and space:

 Maps and lists can also be represented in a so-called "flow syntax," which looks
very much like JavaScript or Python:

DEVASCv1 80

YAML
 Long Strings: They are represented using a 'folding' syntax, where linebreaks are

presumed to be replaced by spaces when the file is parsed/consumed, or in a
non-folding syntax.

DEVASCv1 81

YAML
 Comments: Comments in YAML can be inserted anywhere except in a long string

literal, and are preceded by the hash sign and a space.

 More YAML Features: YAML has many more features, most often encountered
when using it in the context of specific languages, like Python, or when converting
to JSON or other formats. For example, YAML 1.2 supports schemas and tags,
which can be used to disambiguate interpretation of values.
 For example, to force a number to be interpreted as a string, you could use the

!!str string, which is part of the YAML "Failsafe" schema:

DEVASCv1 82

Parsing and Serializing
 Parsing means analyzing a message, breaking it into its component parts, and

understanding their purposes in context.
 Serializing is roughly the opposite of parsing.
 Popular programming languages such as Python generally incorporate easy-to-

use parsing functions that can accept data returned by an I/O function and
produce a semantically-equivalent internal data structure containing valid typed
data.
 On the outbound side, they contain serializers that turn internal data structures

into semantically-equivalent messages formatted as character strings.

DEVASCv1 83

3.7 Software Development
and Design Summary

DEVASCv1 84

What Did I Learn in this Module?
 Six phases of SDLC: Requirements & Analysis, Design, Implementation, Testing,

Deployment and Maintenance.
 Three popular software development models are Waterfall, Agile, and Lean.
 The MVC design pattern simplifies development of applications that depend on

graphic user interfaces.
 Version control maintains history of changes to a file. Types of version control

systems: Local, Centralized, and Distributed.

DEVASCv1 85

What Did I Learn in this Module?
 Git is an open source implementation of a distributed version control system and

has two types of repositories: local and remote.
 Clean code is the result of developers trying to make their code easy to read and

understand for other developers.
 Code review involves reviewing a codebase, a subset of code, or specific code

change to provide feedback.
 Three most popular standard formats for exchanging information with remote

APIs: XML, JSON and YAML.
 Parsing requires analyzing a message, breaking it into its component parts, and

understanding their purposes in context. Serializing is roughly the opposite.

DEVASCv1 86

New Terms and Commands
 Software Development Life

Cycle (SDLC)
 User experience (UX)
 Software Requirement

Specification (SRS)
 Agile Scrum
 Lean
 Extreme Programming (XP)
 Feature-Driven Development

(FDD)
 Sprints
 Backlog
 User stories
 Scrum Teams
 Model-View-Controller (MVC)

 Centralized Version Control
Systems (CVCS)

 Distributed Version Control
System (DVCS)

 Git
 Branching
 GitHub
 Arguments
 Parameters
 Object-Orient Programming

(OOP)
 Formal Code Review
 Change-Based Code Review
 Over-the-Shoulder Code Review

 Test-Driven Development
(TDD)

 Unit Testing
 Software Development Kits

(SDKs)
 XML
 JSON
 YAML
 Application Programming

Interfaces (APIs)
 REpresentational State

Transfer (REST)
 Long Strings
 Parsing
 Serializing

DEVASCv1 87

	Module 3: Software Development and Design
	Module Objectives
	3.1 Software Development
	Introduction
	Software Development Life Cycle (SDLC)
	Requirements and Analysis Phase
	Design and Implementation Phases
	Testing, Deployment, and Maintenance Phases
	Testing, Deployment, and Maintenance Phases
	Software Development Methodologies
	Waterfall Software Development
	Agile Software Development
	Agile Methods
	Agile Methods
	Agile Methods
	Agile Methods
	Lean Software Development
	Lean Software Development
	Lean Software Development
	Lean Software Development
	Lean Software Development
	Explore Python Development Tools
	3.2 Software Design Patterns
	Introduction
	The Original Design Patterns
	Observer Design Pattern
	Model-View-Controller (MVC)
	3.3 Version Control Systems
	Types of Version Control Systems
	Types of Version Control Systems
	Types of Version Control Systems
	Types of Version Control Systems
	Git
	Git
	Local vs. Remote Repositories
	What is Branching?
	GitHub and Other Providers
	Git Commands
	Git Commands
	Git Commands
	Adding and Removing Files
	Adding and Removing Files
	Adding and Removing Files
	Updating Repositories
	Updating Repositories
	Updating Repositories
	Updating Repositories
	Branching Features
	Branching Features
	Branching Features
	Branching Features
	.diff Files
	3.4 Coding Basics
	Methods, Functions, Modules, and Classes
	Clean Code
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Methods and Functions
	Modules
	Classes
	3.5 Code Review and Testing
	What is a Code Review and Why Should You Do This?
	Types of Code Reviews
	Testing
	Unit Testing
	Integration Testing
	Test-Driven Development (TDD)
	3.6 Understanding Data Formats
	Data Formats
	XML
	XML
	XML
	XML
	JSON
	JSON
	YAML
	YAML
	YAML
	YAML
	YAML
	Parsing and Serializing
	3.7 Software Development and Design Summary
	What Did I Learn in this Module?
	What Did I Learn in this Module?
	New Terms and Commands
	Slide Number 87

