
DEVASCv1

Module 4: 
Understanding and 
Using APIs



DEVASCv1 2

Module Objectives
 Module Title: Understanding and Using APIs
 Module Objective: Create REST API requests over HTTPS to securely integrate 

services.
 It will comprise of the following sections:

Topic Title Topic Objective
3.1 Introducing APIs Explain the use of APIs.

3.2 API Design Styles Compare synchronous and asynchronous API design 
styles.

3.3 API Architecture Styles Describe common API architecture styles.
3.4 Introduction to REST APIs Explain the functions of REST APIs.

3.5 Authenticating a REST API Create REST API requests over HTTPS to securely 
integrate services.

3.6 API Rate Limits Explain the purpose of API rate limits
3.7 Working with Webhooks Explain the use of webhooks.
3.8 Troubleshooting API calls Explain how to troubleshoot REST APIs



DEVASCv1 3

4.1 Introducing APIs



DEVASCv1 4

What is an API?
 An Application Programming Interface (API) allows one piece of software talk to 

another.
 It uses common web-based interactions or communication protocols and its own 

proprietary standards.
 An API determines what type of data, services, and functionality the application 

exposes to third parties.
 By providing APIs, applications can control what they expose in a secure way.
 Example of different types of API integrations:

• Cloud service
• Thin or thick application
• Mobile application
• Scripts



DEVASCv1 5

Why use APIs?
 APIs are built to be consumed programmatically by other applications and they 

can also be used by humans who want to interact with the application manually.
 APIs are used to eliminate repetitive manual tasks and replace them with 

automation.
 Use cases of APIs are as follows:

• Automation tasks – Build a script that performs manual tasks automatically and 
programmatically.

• Data integration – An application can consume or react to data provided by 
another application.

• Functionality – An application can integrate another application's functionality 
into its product.



DEVASCv1 6

Why are APIs so popular?
 APIs have existed for decades, but exposure and consumption of APIs has grown 

exponentially in the last 10 years or so.
 Most modern APIs are designed into the product and are thoroughly tested.
 Simplified coding languages such as Python have made it possible for non-

software engineers to build applications and consume APIs. 



DEVASCv1 7

4.2 API Design Styles



DEVASCv1 8

Types of Design Styles
 A product’s set of APIs may consist of both synchronous and asynchronous 

designs, where each API’s design is independent of the others.
 The application consuming the API manages the response differently depending 

on the API design.



DEVASCv1 9

Synchronous APIs
 Synchronous APIs respond to a request directly by providing data immediately.
 When are APIs synchronous?

• APIs are synchronous when the data for the request is readily available, such as 
when the data is stored in a database or in internal memory. 

 Benefits of a synchronous API design
• Synchronous APIs enable the application to receive data 

immediately. If the API is designed correctly, the application 
performance will be better.

 Client-side processing
• The application that is making the API request must wait 

for the response before performing any additional code 
execution tasks. Tickets are sold in first-come, 

first served order. This is a 
synchronous process.



DEVASCv1 10

Asynchronous APIs
 Asynchronous APIs provide a response (with no data) to signify that the request 

has been received.
 When are APIs asynchronous?

• APIs are asynchronous when the request takes some time for the server to 
process or if data isn’t readily available.

 Benefit of asynchronous API design
• Asynchronous APIs allow the application to continue execution without being 

blocked till the server processes the request, thus resulting in better 
performance.                                            

 Client-side processing
• With asynchronous processing, the design of the API on 

the server side defines the requirement on the client side.



DEVASCv1 11

4.3 API Architectural 
Styles



DEVASCv1 12

Common Architectural Styles
 There are certain standards, protocols, and specific architectural styles which 

make it easier for consumers of the API to learn and understand the API.
 The three most popular types of API architectural styles are :

• Remote Procedure Call (RPC) 
• Simple Object Access Protocol (SOAP) 
• REpresentational State Transfer (REST)



DEVASCv1 13

Remote Procedure Call (RPC)
 Remote Procedure Call (RPC) is a request-response model that allows an 

application to make a procedure call to another application.
 When RPC is called to a client, the method gets executed and the results get 

returned.
 RPC is an API style that can be applied to different transport protocols such as:

- XML-RPC
- JSON-RPC
- NFS (Network File System)
- Simple Object Access Protocol (SOAP)



DEVASCv1 14

Simple Object Access Protocol (SOAP)
 Simple Object Access Protocol (SOAP) is a XML- based messaging protocol. It 

is used for communication between applications on different platforms or built with 
different programming languages.
 SOAP is:

• Independent: All applications can communicate with all similar and dissimilar 
application types and run on different operating systems

• Extensible: Add features such as reliability and security
• Neutral: Can be used over any protocol, including HTTP, SMTP, TCP, UDP, or 

JMS



DEVASCv1 15

Simple Object Access Protocol (SOAP)
 A SOAP message is an XML document that may contain the following four 

elements:
• Envelope – defines the root element of XML document as a SOAP message.
• Header - contains application-specific information such as authorization, SOAP-

specific attributes and so on
• Body - contains the data to be transported to the recipient
• Fault - provides error and/or 

status information.



DEVASCv1 16

REpresentational State Transfer (REST)
 REpresentational State Transfer (REST) is an architectural style authored by 

Roy Thomas Fielding.
 It established six constraints that can be applied to any protocol in REST.

• Client-server
• Stateless
• Cache model
• Uniform interface
• Layered system
• Code-on-demand
 RESTful API web service must support XML-RPC and JSON-RPC.



DEVASCv1 17

REpresentational State Transfer (REST)
 Client-server

• The client and server should be independent of each 
other.

• This will enable the client to be built for multiple 
platforms which will simplify the server-side components.

 Stateless
• Requests from the client to the server must contain REST 

client-server model and all the information which the 
server needs to make the request.

• They maintain the user state within the local user machine 
so that automation can work non-destructively.

• They can store a user state in an accessible database separate 
from application servers and other components.

• The server cannot contain session states.



DEVASCv1 18

REpresentational State Transfer (REST)
 Cache model

• Responses from the server must state whether the response is cacheable or 
non-cacheable. 

• If it is cacheable, the client can use the data from the response for later 
requests.

 Uniform interface
• The interface between the client and the server adhere 

to the four principles:
- Identification of resources
- Manipulation of resources through representations
- Self-descriptive messages
- Hypermedia as the engine of application state.



DEVASCv1 19

REpresentational State Transfer (REST)
 Layered system

• The Layered system consists of different hierarchical layers in which each layer 
provides services only to the layer above it.

• As a result, it consumes services from the layer below.
 Code-on-demand

• The information returned by a REST service can include executable code (for 
example, JavaScript) or links intended to usefully 
extend client functionality.

• The constraint is optional because execution of 
third-party codes introduces potential security risks.



DEVASCv1 20

4.4 Introduction to REST 
APIs



DEVASCv1 21

REST Web Service APIs
 A REST Web service API (REST API) is a programming interface that 

communicates over HTTP.
 REST APIs use the same concepts as the HTTP protocol which are as follows:

• HTTP requests/responses
• HTTP verbs
• HTTP status codes
• HTTP headers/body



DEVASCv1 22

REST API Requests
 REST API requests are HTTP requests that are a way for an application (client) to 

ask the server to perform a function. 
 REST API requests are made up of four major components:

• Uniform Resource Identifier (URI)
• HTTP Method
• Header
• Body



DEVASCv1 23

REST API Requests
 The Uniform Resource Identifier (URI), also referred to as Uniform Resource 

Locator (URL), identifies which resource the client wants to manipulate. The 
components of a URI are: 
• Scheme: specifies which HTTP protocol should be used, http or https.
• Authority: consists of two parts, namely, host and port.
• Path: represents the location of the resource, the data or object, to be 

manipulated on the server. 
• Query: provides additional details for scope, filtering, or to clarify a request. 



DEVASCv1 24

REST API Requests
 HTTP method:

• REST APIs use the standard HTTP methods to communicate to the web 
services for which action is being requested for the given resource.

• Uses HTTP methods to gather and manipulate data.
• The suggested mapping of the HTTP method to the action is as follows:

• Follows the Create, Read, Update, and Delete (CRUD) functions.

HTTP Method Action Description

POST Create Create a new object or resource.

GET Read Retrieve resource details from the system.

PUT Update Replace or update an existing resource.

PATCH Partial Update Update some details from an existing resource.

DELETE Delete Remove a resource from the system.



DEVASCv1 25

REST API Requests
 Header:

• HTTP headers are formatted as name-value pairs that are separated by a colon 
( : ), [name]:[value].

• Two types of headers:
- Request headers - Include additional information that does not relate to the 

content of the message.

- Entity headers - Additional information that describes the content of the body 
of the message.

Key Example Value Description
Authorization Basic dmFncmFudDp2YWdyYW Provide credentials to authorize the request

Key Example Value Description
Content-Type application/ json Specify the format of the data in the body



DEVASCv1 26

REST API Requests
 Body:

• The body of the REST API request contains the data pertaining to the resource 
that the client wants to manipulate. 

• REST API requests that use the HTTP method POST, PUT, and PATCH 
typically include a body. 

• The body is optional depending on the HTTP method. 
• If the data is provided in the body, then the data type must be specified in the 

header using the Content-Type key.



DEVASCv1 27

REST API Responses 
 REST API responses are HTTP responses that communicate the results of a 

client's HTTP request. 
 REST API Responses are made up of three major components:

• HTTP Status
• Header
• Body
 Curl can be used to show how to access the content displayed in the response 

body.
• Options used when making requests:

- -X, --request - The HTTP method to be used
- -i, --include - Include the response headers
- -d, --data - The data to be sent
- -H, --header - Additional header to be sent



DEVASCv1 28

REST API Responses
 HTTP Status

• The HTTP status code help the client determine the reason for the error and can 
sometimes provide suggestions for fixing the problem. 

• HTTP status codes consists of three digits, where the first digit is the response 
category and the other  two digits are assigned in numerical order. 

• There are five different categories of HTTP status codes:
- 1xx – Informational – for informational purposes, responses do not contain a body
- 2xx – Success – the server received and accepted the request
- 3xx – Redirection – the client has an additional action to take to get the request 

completed
- 4xx -- Client Error – the request contains an error such as bad syntax or invalid input
- 5xx -- Server Error – unable to fulfill the valid requests.



DEVASCv1 29

REST API Responses
The common HTTP status codes are as follows:HTTP Status 

Code
Status Message Description

200 Ok Request was successfully and typically contains a payload (body)

201 Created Request was fulfilled and the requested resource was created

202 Accepted Request has been accepted for processing and is in process

400 Bad Request Request will not be processed due to an error with the request

401 Unauthorized Request does not have valid authentication credentials to perform the 
request

403 Forbidden Request was understood but has been rejected by the server

404 Not Found Request cannot be fulfilled because the resource path of the request 
was not found on the server

500 Internal Server Error Request cannot be fulfilled due to a server error

503 Service Unavailable Request cannot be fulfilled because currently the server cannot handle 
the request



DEVASCv1 30

REST API Responses
 Header - The header in the response is to provide additional information between the server 

and the client in the name-value pair format that is separated by a colon ( : ), 
[name]:[value].There are two types of headers: response headers and entity headers.
• Response headers – It contains additional information that doesn't relate to the content of 

the message. The typical response headers for a REST API request include:

• Entity headers – They are additional information that describes the content of the body of 
the message. One common entity header specifies the type of data being returned:

Key Example Value Description

Set-Cookie JSESSIONID=30A9DN810FQ428P; Path=/ Used to send cookies from the server

Cache-Control Cache-Control: max-age=3600, public Specify directives which MUST be obeyed by all 
caching mechanisms

Key Example Value Description

Content-Type application/json Specify the format of the data in the body



DEVASCv1 31

REST API Responses
 Response Pagination

• Response Pagination enables data to be broken into chunks. 
• Most APIs that implement pagination use the query parameter to specify which 

page to return in the response.
 Compressed response data 

• Compressed data reduces large amount of data that cannot be paginated
• To request a data compression, the request must add the Accept-Encoding field 

to the request header. The accepted values are:
- gzip
- compress
- deflate
- br
- identity
- *



DEVASCv1 32

Using Sequence Diagrams with REST API
 Sequence diagrams are used to explain a sequence of exchanges or events.
 API request sequence diagram has three separate sequences: 

• Create session – the starting request is labeled as HTTPS: Create Session 
w/credentials. 

• Get devices – request a list of devices 
from the platform.

• Create device – begins with a POST 
request to create a device.



DEVASCv1 33

4.5 Authenticating to a 
REST API



DEVASCv1 34

REST API Authentication
 REST APIs require authentication so that random users cannot access, create, 

update, or delete information incorrectly or maliciously.
 Some APIs that do not require authentication are read-only and they do not 

contain any critical or confidential information. 



DEVASCv1 35

Authentication Vs. Authorization
 Authentication:

• Authentication proves the user’s identity.
• For example, when you go to the airport, you have to show 

your government-issued identification or use biometrics to 
prove that you are the person you claim to be. 

 Authorization:
• Authorization defines the user access.
• It is the act  where the user is proving to have permissions 

to perform the requested action on that resource.
• For example, when you go to a concert, all you need to show 

is your ticket to prove that you are allowed in.



DEVASCv1 36

Authentication mechanisms
 The common types of authentication mechanisms include:

• Basic authentication: It transmits credentials as username/password pairs 
separated with a colon (:) and encoded using Base64.

• Bearer authentication: It uses a bearer token, which is a string generated by an 
authentication server such as an Identity Service (IdS).

• API Key: It is a unique alphanumeric string generated by the server and 
assigned to a user. The two types of API keys are public and private.



DEVASCv1 37

Authorization Mechanisms
• Open Authorization (Oauth) combines authentication with authorization.
• Oauth was developed as a solution to insecure authentication mechanisms.
• Oauth has increased security as compared to other options.
• There are two versions of Oauth - OAuth 1.0 and OAuth 2.0, where OAuth 2.0 is 

not backwards compatible. 
• OAuth 2.0 authorization framework enables a third-party application to obtain 

limited access to an HTTP service.
• OAuth allows the user to provide credentials directly to the authorization server 

[Identity Provider (IdP) or an Identity Service (IdS)], to obtain an access token to 
share with the application. 

• The process of obtaining the token is called a flow.



DEVASCv1 38

4.6 API Rate Limits



DEVASCv1 39

What are Rate Limits?
 An API rate limit is a way for a web service to control the number of requests a 

user or an application can make per defined unit of time. 
 Rate limiting helps to :

• avoid a server overload from too many requests at once.
• provide better service and response time to all users.
• protect against a Denial-of-Service (DoS) attack.



DEVASCv1 40

Rate Limit  Algorithms
 Leaky bucket 

• This algorithm puts all incoming requests into a request queue in the order in 
which they were received.

• The incoming requests can come in at any rate, 
but the server will process the requests from the 
queue at a fixed rate. 

• If the request queue is full, the request is rejected.



DEVASCv1 41

Rate Limit  Algorithms
 Token bucket 

• This algorithm gives each user a defined number of tokens they can use within a 
certain increment of time.

• When the client makes a request, the server checks the bucket to make sure it 
contains at least one token. If so, it removes that token and processes the 
request. If there isn't a token available, it rejects the request.

• The client must calculate the number of tokens he currently has to avoid rejected 
requests.



DEVASCv1 42

Rate Limit  Algorithms
 Fixed window counter 

• In fixed window counter algorithm, a fixed window of time is assigned a counter 
to represent how many requests can be processed during that period.

• When the server receives a request, the counter for the current window of time 
must be zero. 

• When the request is processed, the 
counter is deducted. If the limit for 
that window of time is met, all 
subsequent requests within that 
window of time will be rejected.



DEVASCv1 43

Rate Limit  Algorithms
 Sliding window counter 

• This algorithm allows a fixed number of requests to be made in a set duration of 
time.

• When a new request is made, the server counts how many requests have 
already been made from the beginning of the window to the current time to 
determine if the request should be processed or rejected.

• The client needs to ensure that the rate limit does not exceed at the time of the 
request.



DEVASCv1 44

Knowing the Rate Limit
 Many rate limiting APIs add details about the rate limit in the response's header.
 The commonly used Rate Limit keys include:

• X-Rate Limit-Limit – The maximum number of requests that can be made in a 
specified unit of time.

• X-Rate Limit-Remaining – The number of pending requests that the requester 
can make in the current rate limit window

• X-Rate Limit-Reset – The time when the rate limit window will reset.



DEVASCv1 45

Exceeding the Rate Limit
 When the rate limit is exceeded, the server automatically rejects the request and 

sends back an HTTP response to the user.
 The response containing the ‘rate limit exceeded’ error also includes a meaningful 

HTTP status code.
 The most commonly used HTTP status codes are 429: Too Many 
Requests or 403: Forbidden.



DEVASCv1 46

4.7 Working with 
Webhooks



DEVASCv1 47

What is a Webhook?
 A Webhook is an HTTP callback, or an HTTP POST, to a specified URL that 

notifies the application when a particular activity or event is occurred in the 
resources.
 With webhooks, applications are more efficient as polling mechanisms are not 

required.
 Webhooks are also known as reverse APIs, because applications subscribe to a 

webhook server by registering with the webhook provider.
 Multiple applications can subscribe to a single webhook server.
 Examples:

• The Cisco DNA Center platform provides webhooks that enable third-party 
applications to receive network data when specified events occur.

• You can create a webhook to have Cisco Webex Teams notify you of new 
messages posted in a particular room. 



DEVASCv1 48

Consuming a Webhook
 In order to receive a notification from a webhook provider, the application must 

meet certain requirements:
• The application must be running at all times to receive HTTP POST requests.
• The application must register a URI on the webhook provider.

- Also, the application must handle the incoming notifications from the webhook 
server.

 Use free online tools to ensure the application is receiving notifications from a 
webhook.



DEVASCv1 49

4.8 Troubleshooting API 
Calls



DEVASCv1 50

Troubleshooting REST API Requests
 There will be instances where you will make an API request but will not get the 

expected response. Hence, learning to troubleshoot the most common REST API 
issues is important.
 Always have the API reference guide and API authentication information handy 

while troubleshooting the REST API issues.



DEVASCv1 51

No Response and HTTP Status Code from the API Server
 Sometimes API servers cannot be reached or fail to respond. You can identify 

what went wrong from the error messages received as a result of the request.
 Troubleshooting tips for client side error:

• User error: Mistyping the URI when using the API for the first time.
• Invalid URI Example – To test the invalid URI condition, run a script which 

makes the request to a URI that is missing the scheme. 

• The traceback will be as follows:



DEVASCv1 52

No Response and HTTP Status Code from the API server
 Wrong Domain name Example – To test the wrong domain name condition, run 

a script which simply makes the request to a URI that has the wrong domain 
name.



DEVASCv1 53

No Response and HTTP Status Code from the API server
 Connectivity Issues 

• Are there any Proxy, Firewall or VPN issues?
• Is there an SSL error?
 Invalid Certificate Example

• This issue can only occur if the REST API URI uses a secure connection 
(HTTPS). 

• When the scheme of the URI is HTTPS, the connection will perform an the SSL 
handshake between the client and the server. If it fails, fix the invalid certificate

• Traceback:



DEVASCv1 54

No Response and HTTP Status Code from the API server
 But, if you are working in a lab environment where the certificates aren't valid yet, 

you can turn off the certificate verification setting.
 To turn it off for the requests library in Python, add the verify parameter to the 

request.

 Resolution:
• Fix the issue by identifying the root cause.



DEVASCv1 55

No Response and HTTP Status Code from the API server
 Troubleshooting tips for server-side error:
 API server functioning – power off, cabling issues, domain name change, 

network down.
• To test if the IP address is accessible, run a script which makes the request to 

the URL and waits for a response.

• If the API server is not functioning, you will get a long silence followed by a 
traceback that will be as follows:



DEVASCv1 56

No Response and HTTP Status Code from the API server
 Is there a communication issue between the API server and the client? 

• Use a network capturing tool to see if the response from the API server is lost in 
the communication between the API server and the client..

• If you have access, take a look at the API server logs if the request was 
received.

 Resolution:
• Server-side issues cannot be resolved from the API client side. 
• Contact the administrator of the API server to resolve this issue.



DEVASCv1 57

Interpreting Status Codes
 The status code is a part of HTTP/1.1 standard (RFC 7231), where the first digit defines the 

class of the response and the last two digits do not have any class or categorization role.
 The five categories of status codes are as follows:

• 1xx: Informational – Request received, continuing to process.
• 2xx: Success – The action was successfully received, understood, and accepted.
• 3xx: Redirection – Further action must be taken in order to complete the request.
• 4xx: Client Error – The request contains bad syntax or cannot be fulfilled.
• 5xx: Server Error – The server failed to fulfill an apparently valid request.
 Steps to troubleshoot errors:

• Check the return code – It can help to output the return code in the script during the 
development phase.

• Check the response body – Output the response body during development
• Use status code reference – If the issues cannot be resolved by checking the return 

code and response body.



DEVASCv1 58

2xx and 4xx Status Codes
 2xx: Success error – Successfully received, understood and accepted
 4xx: Client side error – Error is on the client side.
 Troubleshooting common 4xx errors:

• 400 – Bad request
• The request could not be understood by the server due to malformed syntax, 

which is mainly due to:
- Misspelling of resources.
- Syntax issue in JSON object.



DEVASCv1 59

2xx and 4xx Status Codes
 Example : This example returns a status code of 400.

 The server side also tells you "No id field provided", because the id is mandatory 
for this API request.



DEVASCv1 60

2xx and 4xx Status Codes
 401 – Unauthorized: 

• This error message means the server could not authenticate the request.
• Check your credentials, including username, password, API key,  token, request 

URI.

• The authentication auth=("person1","great") should be added in the code



DEVASCv1 61

2xx and 4xx Status Codes
 403 – Forbidden

• The server recognizes the authentication credentials, but the client is not 
authorized to perform the request.

• Example: The status code 403 is not an authentication issue; it is just that the 
user does not have enough privileges to use that particular API.

• The authentication should be modified to use person2/super instead 
of person1/great.



DEVASCv1 62

2xx and 4xx Status Codes
 407 – Proxy Authentication Required

• This code is similar to 401 (Unauthorized), but it indicates that the client must 
first authenticate itself with the proxy.

• In this scenario, there is a proxy server between the client and the server, and 
the 407 response code indicates that the client needs to authenticate with the 
proxy server first.

 409 – The request could not be completed due to a conflict with the current 
state of the target resource.
• For example, an edit conflict where a resource is being edited by multiple users 

would cause a 409 error. 
• Retrying the request later might succeed, as long as the conflict is resolved by 

the server.



DEVASCv1 63

2xx and 4xx Status Codes
 415 - Unsupported Media Type

• In this case, the client sent a request body in a format that the server does not 
support. 

• Example: If the client sends XML to a server that only accepts JSON, the server 
would return a 415 error.

• Omitting the header or adding a header {"content-type":"application/ json"} will 
work.



DEVASCv1 64

5xx Status Codes
 500 - Internal Server Error

• The server encountered an unexpected condition that prevented it from fulfilling 
the request.

 501 - Not Implemented
• The server does not support the functionality required to fulfill this request
 502 - Bad Gateway

• The server (acting as gateway or proxy) received an invalid response from an 
inbound server.

 503 - Service Unavailable
• The server is currently unable to handle the request due to overload or 

scheduled maintenance.
 504 - Gateway Timeout

• The server (acting as a gateway or proxy) did not receive timely response from 
an upstream server.



DEVASCv1 65

4.9 Understanding and 
Using APIs Summary



DEVASCv1 66

What Did I Learn in this Module?
 API defines the ways users, developers, and other applications can interact with 

an application's components.
 An API can use common web-based interactions or communication protocols and 

its own proprietary standards.
 APIs can be delivered synchronously (or) asynchronously.
 The three most popular types of API architectural styles are RPC, SOAP, and 

REST.



DEVASCv1 67

What Did I Learn in this Module?
 A REST web service API (REST API) is a programming interface that 

communicates over HTTP while adhering to the principles of the REST 
architectural style.
 Authentication is the act of verifying the user's identity. Common types of 

authentication mechanisms include Basic, Bearer, and API Key.
 Authorization is the act where the user is proving to have permissions to perform 

the requested action on that resource.



DEVASCv1 68

What Did I Learn in this Module?
• An API Rate limit is a way for a web service to control the number of requests a 

user or an application can make per defined unit of time.
• A webhook is an HTTP callback, or an HTTP POST, to a specified URL that 

notifies your application in case of an activity or ‘event’ in one of your resources 
on the platform. 

• The API reference guide and API authentication information must be handy before 
troubleshooting.

• Client-side errors include user error, wrong URI, wrong domain, a connectivity 
issue, and an invalid certificate.

• Server side error includes communication problems between the server and the 
client.

• 4xx codes are Client-side errors and 5xx codes are Server side errors.



DEVASCv1 70


	Module 4: Understanding and Using APIs
	Module Objectives
	4.1 Introducing APIs
	What is an API?
	Why use APIs?
	Why are APIs so popular?
	4.2 API Design Styles
	Types of Design Styles
	Synchronous APIs
	Asynchronous APIs
	4.3 API Architectural Styles
	Common Architectural Styles
	Remote Procedure Call (RPC)
	Simple Object Access Protocol (SOAP)
	Simple Object Access Protocol (SOAP)
	REpresentational State Transfer (REST)
	REpresentational State Transfer (REST)
	REpresentational State Transfer (REST)
	REpresentational State Transfer (REST)
	4.4 Introduction to REST APIs
	REST Web Service APIs
	REST API Requests
	REST API Requests
	REST API Requests
	REST API Requests
	REST API Requests
	REST API Responses 
	REST API Responses
	REST API Responses
	REST API Responses
	REST API Responses
	Using Sequence Diagrams with REST API
	4.5 Authenticating to a REST API
	REST API Authentication
	Authentication Vs. Authorization
	Authentication mechanisms
	Authorization Mechanisms
	4.6 API Rate Limits
	What are Rate Limits?
	Rate Limit  Algorithms
	Rate Limit  Algorithms
	Rate Limit  Algorithms
	Rate Limit  Algorithms
	Knowing the Rate Limit
	Exceeding the Rate Limit
	4.7 Working with Webhooks
	What is a Webhook?
	Consuming a Webhook
	4.8 Troubleshooting API Calls
	Troubleshooting REST API Requests
	No Response and HTTP Status Code from the API Server
	No Response and HTTP Status Code from the API server
	No Response and HTTP Status Code from the API server
	No Response and HTTP Status Code from the API server
	No Response and HTTP Status Code from the API server
	No Response and HTTP Status Code from the API server
	Interpreting Status Codes
	2xx and 4xx Status Codes
	2xx and 4xx Status Codes
	2xx and 4xx Status Codes
	2xx and 4xx Status Codes
	2xx and 4xx Status Codes
	2xx and 4xx Status Codes
	5xx Status Codes
	4.9 Understanding and Using APIs Summary��
	What Did I Learn in this Module?
	What Did I Learn in this Module?
	What Did I Learn in this Module?
	Slide Number 70

