Module 11

OSI Model, Network Devices, and Network Standards

Objectives

- 1. Networking
 - A. Differentiate between layers of the OSI model
 - B.2.9 Compare network devices
 - C.Compare network standards
 - D.2.7 Compare and contrast Internet connection types and features
 - E.2.3 Evaluate TCP/IP Utilities

OSI MODEL

The OSI Model

- 1. Open Systems Interconnection (OSI)
- Reference model
- 3. Industry standard framework
- 4. Breaks the network process into seven manageable layers
- Defined by the ISO (International Standardization Organization)
- Used universally for teaching and understanding network functionality
- 7. Achieve greater compatibility and interoperability
- 8. Follow for:
 - A. Designing
 - **B.** Building
 - C. Upgrading
 - D. Troubleshooting

Reasons for using the OSI Model

- Divides the aspects of network operation into less complex elements
- Standardizes interfaces and enables engineers to specialize design/development efforts on specific functions
- Facilitates modular engineering and prevents changes in one area from affecting other areas
- Ensures interoperability and allows network designers to choose the right networking devices
- Accelerates evolution and helps with testing and troubleshooting the network

The 7 layers of the OSI Model

- 1. Always in the same order
- 2. Layer 1 on the bottom
- 3. Layer only communicate with the layer directly above or below it
- 4. All traffic must enter and exit through layer 1
- 5. Mnemonic device:
 - A.Please Do Not Throw Sausage Pizza Away

Physical Layer - Layer 1

- 1. Keywords bits or media
- 2. Converts information into bits
- Uses twisted pair, fiber-optic, coaxial, or wireless
- 4. Provides the electrical, mechanical, procedural, and functional means for activating and maintaining whatever physical link exists between hosts
- 5. Repeaters, hubs, and transceivers
- 6. Common troubleshooting layer

Data Link Layer - Layer 2

- Application Presentation Session Transport Network Data Link **Physical**
- 1. Keywords MAC and LLC
- 2. Speed of transmission
- 3. Flow Control
- 4. Error Identification
- Physical Topology
- 6. Bridges and Switches
- 7. Media Access Control
- 8. MAC addresses or Physical address
- 9. Written in hexadecimal

Network Layer - Layer 3

- Application Presentation Session Transport Network Data Link **Physical**
- 1. Keyword IP
- 2. Deals with higher-level addressing schemes (IP) and path determination
- 3. Logical Topology
- 4. Indicates to which network and subnetwork a computer belongs
- 5. Routers

Transport Layer - Layer 4

- Keyword Reliability
- 2. Responsible for segmenting data
- 3. Regulates the flow of information
- 4. Responsible for delivery of data between two hosts
- 5. TCP and UDP
- 6. Sequence numbers
- 7. Acknowledgements
- 8. Windowing

Session Layer - Layer 5

- Application Presentation Session 5 Transport Network Data Link **Physical**
- 1. Keyword communication
- Establishes, maintains, and manages conversations called sessions
- 3. Dialog control
- 4. Provides services to the presentation layer

Presentation Layer - Layer 6

- Application Presentation Session **Transport** Network **Data Link Physical**
- Keyword syntax
- 2. Facilitates communication between applications on diverse computer systems to occur in such a way that it is transparent to the applications.
- 3. Data Formatting:
 - A. Encryption / De-encryption
 - **B.**Compression / De-compression
 - C.Syntax

Application Layer - Layer 7

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

- 1. Keyword WWW
- 2. Closest to the end user
- 3. Does not provide services to any other layer
- 4. Provides services to applications used by the end user:
 - A. Telnet
 - B. FTP
 - C. HTTP
 - D. Work processing programs
 - E. Spreadsheet programs
 - F. E-mail

Encapsulation

- 1. Process of placing one message format into another format so that the message can be delivered
- 2. Receives headers, footers, and other information
- 3. Five step process:
 - A. Data
 - B. Segments
 - C.Packets
 - D.Frames
 - E. Bits

NETWORKING DEVICES

Communication Parameters

- 1. Serial ports commonly used to communication with routers and switch during their configuration
- 2. Communication parameters:
 - A.9600 bit rate (varies)
 - B. Eight data bits
 - C.No parity
 - D.One stop bit
 - E.No flow control

Layer 1 Networking Devices

- 1. Repeater
- 2. Hub
- 3. Modem
- 4. Transceiver
- 5. Provide no security options

Network Interface Card (NIC) – Layer 2

- 1. Plugs into a motherboard
- 2. Provides ports for the network cable connections
- 3. Computer's interface with the LAN
- 4. Considerations:
 - A. The type of network
 - B. The type of media
 - C. The type of system bus
- 5. It is common to find the network connected to USB

Bridges and Switches – Layer 2

- 1. Make intelligent decisions
- 2. Bridge
- 3. Switch (multi-port bridge)
 - A. Vital part of today's LANs.
 - B. Stop collisions
 - C. Main functions:
 - Make intelligent decisions based on a computers MAC address (layer 2)
 - Used to connect network segments
 - Break collision domains
 - Interconnect switches to a high speed backbone

Routers – Layer 3

- 1. Slower than bridges and switches
- 2. Make "smart" decisions:
- 3. How to route (or send) packets
- 4. Interconnects networks
- 5. Blocks broadcasts
- 6. Path determination
- 7. Commonly perform DHCP and NAT services

Firewalls – Layer 4

- 1. Software or hardware
- 2. Protects networks
- 3. Blocks incoming packets
- 4. Makes intelligent decisions based on:
 - A.Port number
 - **B.**Protocol

NETWORKING STANDARDS

IEEE 802 Standards

- 802.1: High-level interface
- 802.2: Logical link control
- 802.3: CSMA/CD (Ethernet)
- 802.4: Token Bus
- 802.5: Token Ring
- 802.6: MANs
- 802.7: Broadband LANs
- 802.8: Fiber-optic LANs
- 802.9: Integrated data and voice networks
- 802.10: Security
- 802.11: Wireless networks

Ethernet

- 1. Most popular type of LAN architecture
- 2. Based on the IEEE 802.3 standard
- 3. Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
- 4. Used by:
 - A. Wired
 - **B.** Wireless
 - C.Satellites
- Directly connect one NIC card to the other with a crossover cable

Ethernet Networking

- 1. Advantages:
 - A. Fastest home-networking technology
 - B. Inexpensive
 - C. Reliable
 - D. Easy to maintain
 - E. Scalable
 - F. Technical support
- 2. Disadvantages:
 - A. Additional equipment needed
 - B. Expensive to wire
 - C. Set-up and configuration can be difficult
 - D. Technical jargon

Ethernet Variations, Distinguished by Speed

- 1. 10-Mbps Ethernet
- 2. 100-Mbps Ethernet or Fast Ethernet
- 3. 1000-Mbps or Gigabit Ethernet
- 4. 10 gigabit Ethernet
- 5.40 Gb Ethernet

CONNECTION TYPES

Dial-up

- Uses the public switched telephone network (PSTN) or plain old telephone systems (POTS)
- 2. Establish connection to an Internet service provider (ISP) via telephone lines
- 3. Uses modems to encode and decode packets
- 4. Maximum transfer speed of 56 Kbps

Broadband

Describes a type of data transmission in which a single medium (fiber or copper wire) can carry several channels at once

DSL

- 1. Broadband connection
- 2. Brings data over the telephone line
- 3. An "Always On" technology
- 4. Cabling may be copper or fiber
- 5. Modem reads and splits out the data signal
- 6. Must use splitters on each telephone to separate out the voice signal
- 7. May use either:
 - A.Asymmetric (ADSL)
 - B.Symmetric (SDSL)

Cable

- 1. Broadband connection
- 2. Uses cable television infrastructure
- 3. Fastest connection speed available
- 4. Requires a cable modem at the customer's premises connected via coaxial cable
- Shared technology
- 6. Download speeds are generally twice as fast as upload speeds
- 7. Uses F connectors and RG-6 cable

Satellite

- 1. Provided through geostationary satellites
- 2. Relies on four primary components:
 - A.A satellite in geosynchronous orbit
 - B.A number of ground stations (gateways) that relay the Internet signal to and from the satellite via microwaves
 - C.A dish antenna located at the subscriber's home or business
 - D.A modem at the user end that translates the signal

ISDN (Integrated Services Digital Network)

- 1. Digital service over existing telephone wire
- 2. Advanced Telephone Service
- 3. WAN Technology
- 4. Solves low bandwidth problems
- 5. Faster than phone, slower than DSL
- 6. Expensive

Cellular

- 1. Also known as Mobile broadband
- 2. Tethering
- 3. Supports voice, data, and video Devices include:

- A.PC cards
- B. Mobile broadband modems
- C.Portable devices with built-in support for mobile broadband,
- Internet access subscriptions are usually sold separately

TCP/IP PROTOCOL AND UTILITIES

TCP/IP Protocol Suite

- 1. A collection of protocols
- 2. Used to exchange information on the Internet
- 3. Works at layer 3, 4, & 6

1. Ping

- A.Command-line utility
- B. Works by sending an ICMP echo request
- C.Receiving computer then sends back an ICMP echo reply message

2. Tracert

- A.Command-line utility
- B. Displays a packets route

Address Resolution Protocol (ARP)

- Map Internet Protocol (IP) addresses to physical hardware (MAC) addresses
- 2. The ARP cache

- **1.**arp -a
- 2.arp -d

Reverse Address Resolution Protocol (RARP)

 Used to obtain IP address information based on the physical or MAC address

Displayed using different utilities, depending on the operating system:

- 1.ipconfig Windows NT, 2000, XP, 7, and 8 (command-line)
- 2.winipcfg Windows 95, 98, and 2000 (graphical interface)
- 3.ifconfig UNIX and Linux (command-line)
- 4.config NetWare (server console)

Utilities and Applications

- 1. Telnet
- 2. Nbtstat
- 3. Netstat
- 4. Route

Summary

In this module we discussed:

- 1. The OSI model, its layers and functions
- 2. Encapsulation process
- 3. Networking devices and their layers
- 4. Ethernet networking standards
- 5. Types of connections and their uses
- 6. TCP/IP protocols and utilities