Module 12

IPv4 Addressing and Subnetting

Objectives

1. 2.3 Explain the properties and characteristics of TCP/IP and IPv4 subnetting

NETWORKING AND IP ADDRESSING

Addressing Schemes

<u>Flat</u>

- 1. Used by Intranetworks
- 2. Used by Layer 2
- 3. Used in MAC address
- Is assigned statically based on next available number or random
 - A. Social Security Number
 - B. Your Name
 - C. MAC- C0:AD:00:23:4F:89

Hierarchical

- 1. Used by Internetworks
- 2. Used by Layer 3
- 3. Used by IP address
- 4. Is assigned dynamically based on you location
 - A. Phone System
 - B. ZIP Code
 - C. IP- 182.157.63.219

Internet Protocol address (IP address)

- A numerical label assigned to each device participating in a network
- Every device on the Internet must have a unique IP address to identify itself
- 3. Internet Assigned Numbers Authority (IANA)
- 4. Manages the IP address space allocations globally
- Delegates five regional Internet registries (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers)
- 6. For an IP to be routable over the Internet, it must have:
 - A. IP address
 - B. Subnet Mask
 - C. Default Gateway
 - D. DNS address (only for address lookup, i.e. web sites)

Types of Addressing

1. Static IP address

- A. Manually assigned to a device by an administrator
- B. Constant and does not change.

2. Dynamic IP address

- A. Assigned to device each time it starts
- B. Requires less human intervention
- C. Less administration
- D. Uses Dynamic Host Configuration Protocol (DHCP)
- E. Enabled by default
- F. No user intervention

Classful vs Classless

Classful

- C, D (multicast) and E (reserved)
- Does not send subnet information
- 3. All networks are the same size
- 4. Have the same subnet mask
- 5. Can NOT use first or last subnets

Classless

- 1. Divided into 5 classes A, B, 1. Also known as CIDR (Classless Inter-Domain Routing)
 - 2. Sends subnet information
 - 3. Network can be different sizes
 - Networks can have different subnet masks using VLSM (Variable Length Subnet Mask)
 - 5. Can use first and last subnets

Network & Host Numbers

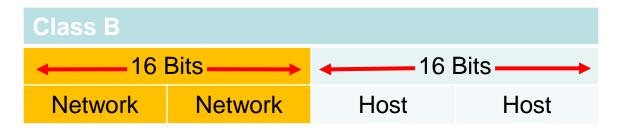
			1 Byte ←8 Bits→	
Class A	N	Н	Н	Н
Class B	N	N	Н	Н
Class C	N	N	N	Н

The formulas are the default configuration for each class:

1. N = Network Number

- A. Assigned by the American Registry for Internet Numbers (ARIN)
- B. Administrator has no control over this part of the address

2. H = Host Number


A. Assigned and controlled by the network administrator

Class A Addresses


- 1. First octet only identifies the network
- When written in a binary format, the first (leftmost) bit of a Class A address is always 0 (zero)
- 3. Class A IP address example: 124.95.44.15
- 4. Range from **1-126** in their first octet
- 127 is part of a class A range but has been reserved for loopback testing
- 6. Zero (0) can't be used
- Remaining three octets can be used for the host portion of the address
- 8. 2²⁴ or 16,777,216, possible IP addresses per class A network

Class B Addresses

- 1. When written in a binary format, the first (leftmost) bit of a Class B address is always 10 (one and zero)
- 2. Class B IP address example: 151.10.13.28
- The first two octets identify the network number assigned by ARIN
- 4. Range from **128 to 191** in their first octet
- 5. Remaining two octets can be used for the host portion of the address
- 6. 2¹⁶ or 65,536, possible IP addresses per class B network

Class C Addresses

- 1. When written in a binary format, the first (leftmost) bit of a Class C address is always 110 (one, one and zero)
- 2. Class C IP address example: 201.110.213.28
- 3. The first three octets identify the network number assigned by ARIN
- 4. Range from **192 to 223** in their first octet
- 5. Last octet can be used for the host portion of the address
- 6. 28 or 256, possible IP addresses per class C network

Address Ranges

IMPORTANT!!! MEMORIZE

N.H.H.H Class A 1 - 126128 - 191Class B N.N.H.H 192 - 223Class C

Converting to Binary

1. An IP Address is made up of 32 bits broken down into 4 Octets (8 bits each)

2. 11000000.00001100.00000101.10101010 or 192.12.5.170

3. Known as the Dotted Decimal

Converting to Binary

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Decimal to Binary

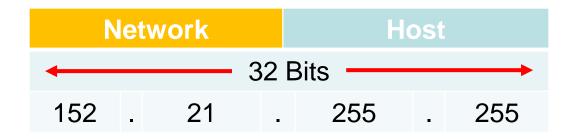
Binary to Decimal

27	28	25	2*	23	22	21	20
128	64	32	16	8	4	2	1

27	26	25	2*	23	22	21	20
128	64	32	16	8	4	2	1

Binary

Network Address



- 1. Ends with binary 0s in all host bits
- 2. Also know as the wire address
- 3. Never used as a device IP address
- 4. Used by routers to forward data
- 5. Example IP address: 152.21.2.3
 - A. Class B
 - B. First two octets are assigned
 - Last two octets are host numbers used for devices in the network
 - D. Network address: 152.21.0.0

Examples of Network Numbers

What is the network number for this IP address?

Broadcast Address

- 1. End with binary 1s in host bits
- 2. Used to send data to all devices on a network
- 3. Never used as a device IP address
- 4. Example IP address: 152.21.2.3
 - A. Class B address
 - B. First two octets are assigned
 - Last two octets are host numbers used for devices in the network
 - D. Broadcast address: 152.21.255.255

Examples of Broadcast Address

What is the Broadcast address for this IP address?

- 1. 194.78.112.6 **194.78.112.255**
- 2. 117.23.8.3 **117.255.255.255**
- 3. 156.132.64.12 **156.132.255.255**
- 4. 208.150.112.16 **208.150.112.255**
- 5. 91.118.125.2 **91.255.255.255**

Network Number and Broadcast Address

- 1. All 0's in the host address is the Network Number
- 2. All 1's in the host address in the Broadcast Address
- 3. These two addresses can never be used when assigning IP's
- 4. When finding the number of useable host addresses, you will always subtract 2 (network & Broadcast)

Why Subnet?

Before Subnetting

Network	Host	
After Subnetting		
Network	Subnet	Host

- A way of breaking networks into smaller more manageable pieces
- 2. More efficiently use IP addresses
- 3. Reduces the amount of wasted space
- 4. Reduce the size of a broadcast domains
- Better bandwidth utilization

Subneting

Network	Network	Network	Н	lost
8 Bits	8 Bits	8 Bits	8	Bits
27 26 25 24 23 22 21 20	27 26 25 24 23 22 21 20	27 26 25 24 23 22 21 20	2 ⁷ 2 ⁶ 2 ⁵	2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰
11000000 .	00000101	. 00100010 .	000	01011
			Subnet	Host

- 1. Subnet addresses include:
 - A. The Class A, Class B, or Class C network portion
 - B. A subnet field
 - C. A host field
- 2. Subnet field and the host field are created from the original host portion
- 3. Provides addressing flexibility
- 4. To create a subnet address:
 - A. Network administrator borrows bits from the original host portion
 - B. Designates them as the subnet field (gives up control)

IMPORTANT!!!

1. You must always borrow at least 2 bits and you must always leave at least 2 bits

One for the network number and one for the broadcast

What is a Subnet Mask?

Class B Default Subnet Mask 255.255.0.0

Class B Subnet Mask with 4 bits borrowed 255.255.240.0

- 1. Formal name: extended network prefix
- 2. Tells the network devices which part of an address is the network field and which part is the host field
- 3. 32 bits long and 4 octets, just like an IP address
- 4. Bits are always borrowed from the left most available bit
- 5. Allow numbers: 255, 254, 248, 240, 224, 192, 128, 0
- Step to determine the subnet mask:
 - A. Express the subnetwork IP address in binary form
 - B. Replace the network and subnet portion of the address with all 1s
 - C. Replace the host portion of the address with all 0s
 - D. Convert the binary expression back to dotted-decimal notation

Subnet Mask

If you have a class C address:

1. How many bits are used without subneting?

24

2. What is the subnet mask?

11111111.111111111.11111111.00000000 or 255.255.255.0

3. If you borrowed 4 bits, how many are used?

28

4. What is the subnet mask?

11111111.11111111.111111111.11110000 or 255.255.255.240

Examples of Subnet Mask

What is the Subnet Mask for this IP address?

- 2. 117.23.8.3/10 **255.192.0.0**
- 3. 156.132.64.12/19 **255.255.224.0**
- 4. 208.150.112.16/30 **255.255.255.252**
- 5. 91.118.125.2/16 **255.255.0.0**

Subneting

- Always remember that there are two reserved/unusable subnets
- Each time you borrow another bit from the host field, the number of subnets created increases by a power of 2 (doubles)
- 3. Examples:
 - A. Borrowing 2 bits creates four possible subnets 2² (2x2)
 - B. Eight possible subnets are created by borrowing 3 bits: 2³ (2 x 2 x 2)
 - C. Sixteen possible subnets are created by borrowing 4 bits: 2⁴ (2 x 2 x 2 x 2)
 - D. What if you borrow one bit?

Useable Subnets and Host

MEMORIZE

1. Formula for calculating **USEABLE Subnets** (<u>b</u>orrowed bits):

 2^{b} - 2 = useable subnets

2. Formula for calculation **USEABLE Hosts** (<u>u</u>nused bits):

 $2^{\underline{u}}$ - 2 = useable hosts

Calculating Subnets and Hosts

Example: Class C network, borrowing 3 bits:

1. What is the subnet mask?

2. How many usable subnets?

$$2^{b}-2=?$$
 2^{3} (8) - 2 = 6 usable subnets

3. How many useable hosts per subnet?

$$2^{u}-2=$$
? 2^{5} (32) - 2 = 30 usable hosts

Calculating Subnets and Hosts

The more subnets you create, the less hosts each subnet will have

Class "C" Subnetting

Number of Bits Borrowed	Number of Subnets Created 2 ^(B=Bits Borrowed)	Number of Hosts Per Subnet 2 ^(U=Unused Bits)
2	2 ² (4) - 2 = 2	2 ⁶ (64) - 2 = 62
6 left for Host	4 Possible and 2 Usable	64 Possible and 62 Usable
3	2 ³ (8) - 2 = 6	2 ⁵ (32) - 2 = 30
5 left for Host	8 Possible and 6 Usable	32 Possible and 30 Usable
4	2 ⁴ (16) - 2 = 14	2 ⁴ (16) - 2 = 14
4 left for Host	16 Possible and 14 Usable	16 Possible and 14 Usable
5	2 ⁵ (32) - 2 = 30	2 ³ (8) - 2 = 6
3 left for Host	32 Possible and 30 Usable	8 Possible and 6 Usable
6	2 ⁶ (64) - 2 = 62	2 ² (4) - 2 = 2
2 left for Host	64 Possible and 62 Usable	4 Possible and 2 Usable

Boolean Operations

- The term "operations" in mathematics refers to rules that define how one number combines with other numbers
- 2. Boolean operators binary numbers:
 - **A.AND** is like multiplication
 - **B.OR** is like addition
 - C.NOT changes 1 to 0, and 0 to 1
- 3. In order to route a data packet, the router must first determine the destination network/subnet address by performing a logical AND using the destination host's IP address and the subnet mask
- 4. Result will be the network/subnet address

ANDing

Find the network address for this class B IP:

1.180.160.120.8/18

```
2. What the subnet mask? 255.255.192.0
```

- 3. Change IP to binary 10110100.10100000.01111000.00001000
- 4. Change SM to binary 111111111.1111111.11000000.0000000
- 5. AND function 10110100.10100000.01000000.00000000
- Convert back to decimal
- 7. Network address 180.160.64.0

Classful Subnetting

Things you know by default:

- 1. Class
- 2. Formulas
- 3. Default Mask

Things you must always find out first before finding your IP's:

- 1. Bits Borrowed
- 2. Subnet Mask
- 3. Number of subnets
- 4. Numbers of hosts
- 5. Increment

An IP address of 196.112.48.12 with the most hosts:

1. Bits Borrowed 2

2. Subnet Mask 255.255.255.192

3. Number of subnets 2^2 (4) - 2 = 2 usable

4. Numbers of hosts 2^6 (64) - 2 = 62 usable

An IP address of 196.112.48.12/27:

1. Bits Borrowed 3

2. Subnet Mask 255.255.254

3. Number of subnets 2^3 (8) - 2 = 6 usable

4. Numbers of hosts 2^5 (32) - 2 = 30 usable

A class C address with 4 bits borrowed would have:

1. Bits Borrowed 4

2. Subnet Mask **255.255.250.240**

3. Number of subnets 2^4 (16) - 2 = 14 usable

4. Numbers of hosts 2^4 (16) - 2 = 14 usable

An IP address of 196.112.48.12/29:

1. Bits Borrowed 5

2. Subnet Mask **255.255.255.248**

3. Number of subnets 2^5 (32) - 2 = 30 usable

4. Numbers of hosts 2^3 (8) - 2 = 6 usable

An IP address of 196.112.48.12 with the most subnets:

1. Bits Borrowed 6

2. Subnet Mask **255.255.255.252**

3. Number of subnets 2^6 (64) - 2 = 62 usable

4. Numbers of hosts 2^2 (4) - 2 = 2 usable

Class C Subnetting Chart

Subnet Number	Network Address	Usable Range	Broadcast Address
SN0	196.112.48. 0	196.112.48. 1 – 196.112.48. 62	196.112.48. 63
SN1	196.123.48. 64	196.112.48. 65 – 196.112.48. 126	196.112.48. 127
SN2	196.112.48. 128	196.112.48. 129 – 196.112.48. 190	196.112.48. 191
SN3	196.112.48. 192	196.112.48. 193 – 196.112.48. 254	196.112.48. 255

Subnetting Fundamentals

Class	Range	Formula	Default Mask
A	0-126	N.H.H.H	255.0.0.0
В	128-191	N.N.H.H	255.255.0.0
С	192-223	N.N.N.H	255.255.255.0

- 1. Determine the Class of each given
- 2. Determine how many bits you must borrow (if applicable).
- 3. Determine the possible number and usable number of subnets.

$$2^{(B)} - 2 =$$
Usable Subnets

4. Determine how many possible number and usable number of hosts.

$$2^{(U)} - 2 = U$$
sable Hosts

- 5. Determine the Default Mask.
- 6. Determine the Subnet Mask.
- 7. Determine the increment. (Increment = Possible Number of Hosts)
- 8. Determine the network and broadcast address for each subnetwork.
- 9. Determine the usable range for each subnetwork.

Private Addresses

The following rages are available for private addressing:

Class A	10.0.0.0 - 10.255.255.255
Class B	172.16.0.0 - 172.31.255.255
Class C	192.168.0.0 - 192.168.255.255

- 1. Found in each class
- 2. Preserve IP addresses used on the Internet
- 3. Not routable or usable on the Internet
- 4. Added security
- 5. Used by:
 - A. Hosts that use **Network Address Translation** (NAT)
 - B. Proxy server to connect to a public network
 - C. Hosts that do not connect to the Internet at all

7

Automatic Private IP Addressing (APIPA)

- 1. Feature of modern operating systems
- 2. Automatically self-configures an IP address and subnet mask when a DHCP server isn't available
- 3. IP address range: 169.254.0.1 through 169.254.255.254
- 4. Configures a default class B subnet mask of 255.255.0.0
- 5. Used until a DHCP becomes available
- 6. APIPA cannot be routed over the Internet

Summary

In this module we discussed:

- 1. Flat and Hierarchical address schemes
- 2. What is Internet Protocol (IP)
- 3. Types of addressing
- 4. Classful and Classless addressing
- 5. Network/Host formulas
- 6. The different classes and how they are used
- 7. Ranges for each class
- 8. Network and Broadcast addresses
- 9. Subnetting and the Subnet Mask
- 10. Calculating subnets and hosts
- 11. Private IP addressing