Module 6

RAID and Expansion Devices

Objectives

- 1. PC Hardware
 - A.1.5 Compare and contrast RAID types
 - B.1.8 Compare expansion devices

RAID

- Redundant Array of Independent (or Inexpensive)
 Disks
- 2. Uses multiple hard drives
- 3. Increases performance
- 4. Provides protection against data loss

Why RAID?

- 1. Can combine several physical disks into one larger "virtual" device
- 2. Frequently on servers
- 3. Not a substitute for good backups
- 4. Good for common hardware problems (single disk failure)
- 5. Not a complete data safety solution

RAID Controllers

- 1. Uses specialized disk controllers
- Use advanced technology attachment (ATA) or small computer system interface (SCSI) technologies
- 3. Limited number of ATA disks can be attached
- 4. SCSI may multiple channels
- Controllers must be installed before installing the operating system

Software vs Hardware

- 1. Can be implemented in software
- Software RAID systems usually support RAID 0,
 and 5
- Can be based on disk partitions rather than entire disk drives

RAID Levels

Level	Features
Level 0	Striped Disk Array without Fault Tolerance
Level 1	Mirroring and Duplexing
Level 2	Error-Correcting Coding
Level 3	Parallel transfer with parity
Level 4	Independent Data disks with shared Parity disk
Level 5	Independent Data disks with distributed parity blocks
Level 6	Independent Data disks with two independent distributed parity schemes
Level 7	Optimized Asynchrony for High I/O Rates
Level 10	A Stripe of Mirrors
Level 53	High I/O Rates and Data Transfer Performance
Level 0+1	A Mirror of Stripes

RAID 0: Striped Disk Array without Fault Tolerance

Requires a minimum of 2 hard drives to implement

RAID 0: Striped Disk Array without Fault Tolerance

- 1. Characteristics/Advantages
 - A. Implements a striped disk array
 - B. Extends the size of a volume
 - C. Does not provide reliability or mirroring
 - D. I/O performance is greatly
 - E. Best performance is achieved when data is striped across multiple controllers with only one drive per controller
 - F. No parity calculation overhead
 - G. Very simple design
 - H. Easy to implement
- 2. Disadvantages
 - A. Not a "True" RAID
 - B. No fault-tolerant
 - C. Single point of failure
 - D. Should never be used in mission critical environments

RAID 0: Striped Disk Array without Fault Tolerance

Recommended Applications

- 1. Video Production and Editing
- 2. Image Editing
- 3. Pre-Press Applications
- 4. Any application requiring high bandwidth

RAID 1: Mirroring and Duplexing

- For Highest performance, the controller must be able to perform two concurrent separate Reads per mirrored pair or two duplicate Writes per mirrored pair
- 2. Requires a minimum of 2 hard drives to implement

RAID 1: Mirroring and Duplexing

- 1. Characteristics/Advantages
 - A. One write or two reads possible per mirrored pair
 - B. Twice the read/write transaction rate of single disks
 - C.100% redundancy of data Transfer rate per block is equal to that of a single disk
 - D.Simplest RAID storage subsystem design
- 2. Disadvantages
 - A. Highest disk overhead
 - B. Done by system software
 - C. Hardware implementation is strongly recommended

RAID 1: Mirroring and Duplexing

Recommended Applications

- 1. Accounting
- 2. Payroll
- 3. Financial
- 4. Any application requiring very high availability

RAID 5: Independent Data disks with distributed parity blocks

- 1. Each entire data block is written on a data disk
- 2. Parity for blocks
- 3. Requires a minimum of 3 hard drives to implement

RAID 5: Independent Data disks with distributed parity blocks

- 1. Characteristics/Advantages
 - A. Highest Read data transaction rate
 - B. Medium Write data transaction rate
 - C. Low ratio of ECC (Parity) disks to data disks
 - D. High efficiency
 - E. Good aggregate transfer rate
- 2. Disadvantages
 - A. Disk failure has a medium impact on throughput
 - B. Most complex controller design
 - C. Difficult to rebuild in the event of a disk failure
 - D. Individual block data transfer rate same as single disk

RAID 5: Independent Data disks with distributed parity blocks

Recommended Applications

- 1. File and Application servers
- 2. Database servers
- 3. WWW, E-mail, and News servers
- 4. Intranet servers
- Most versatile RAID level

RAID 10: Very High Reliability combined with High Performance

Requires a minimum of 4 hard drives to implement

RAID 10: Very High Reliability combined with High Performance

- 1. Characteristics/Advantages
 - A. Implemented as a striped array
 - B. Same fault tolerance as RAID level 1
 - C. Same overhead for fault-tolerance as mirroring alone
 - D. High I/O rates are achieved
 - E. Can sustain multiple simultaneous drive failures
- 2. Disadvantages
 - A. Very expensive
 - B. High overhead
 - C. All drives must move in parallel to proper track lowering sustained performance
 - D. Very limited scalability
 - E. High inherent cost

RAID 10: Very High Reliability combined with High Performance

Recommended Applications

1. Database server

RAID 0+1: High Data Transfer Performance

Requires a minimum of 4 hard drives to implement

RAID 0+1: High Data Transfer Performance

- 1. Characteristics/Advantages
 - A. Implemented as a mirrored array whose segments are RAID 0 arrays
 - B. Same fault tolerance as RAID level 5
 - C. Same overhead for fault-tolerance as mirroring alone
 - D. High I/O rates
 - E. Excellent solution for sites that need high performance but are not concerned with achieving maximum reliability
- 2. Disadvantages
 - A. Don't confused with RAID 10
 - B. Very expensive
 - C. High overhead
 - D. All drives must move in parallel
 - E. Very limited scalability

RAID 0+1: High Data Transfer Performance

Recommended Applications

- 1. Imaging applications
- 2. General fileserver

Scanners

- 1. A device that optically scans images and printed text and converts it to a digital image
- 2. Common examples:
 - A. Flatbed scanner
 - B. Hand-held scanners
 - C. Mechanically driven scanners
 - D.3D scanners
- 3. Require drivers
- 4. May have Optical Character Recognition (OCR) software

Biometric Devices

- 1. The identification of humans by distinctive and measurable characteristics used to label and describe individuals
- Used as a form of identification and access control
- 3. Requires manufacturer supplied drivers

Audio/Video Devices

- Expands the functionality of computers
- 2. Many are built-in
- 3. Allow for 5.1 or 7.1 surround sound
- Require no additional drivers for basic use
- Additional drivers add functionality

Network Devices

- 1. Wired and wireless devices
- Allow connections to outside resources and shared information
- 3. Require drivers

Summary

In the module we discussed:

- 1. Different types of RAID, their characteristics, advantages, and disadvantages
- 2. Types of expansion devices and their uses