Module 7

Video and Purchasing Components

Objectives

- 1. PC Hardware
 - A.1.11 Evaluate video components and standards
 - B.1.10 Evaluate monitors
 - C.1.9 Evaluate and select appropriate components for a custom configuration, to meet customer specifications or needs

AUDIO/VIDEO COMPONENTS AND STANDARDS

Audio Card

- 1. Enables the input and output of audio
- 2. Needs a driver installed

The Video Card

- 1. An integrated circuit card
- 2. Provides digital-to-analog conversion, video RAM, and a video controller
- Generates text and images
- 4. Can be built into the motherboard or plugged into an expansion slot
- 5. Needs a driver installed

The Visual Graphics Array (VGA) Mode

Display Characteristics

Bit Depth	Number of Colors
1	2 (monochrome)
2	4 (CGA)
4	16 (EGA)
8	256 (VGA)
16	65,536 (High Color, XGA)
24	16,777,216 (True Color, SVGA)
32	16,777,216 (True Color + Alpha Channel)

- Lowest common denominator of display modes
- 2. Can provide up to 256 colors
- 3. Bit depth defines the number of colors
- Higher bit depth requires more processing power
- Lower bit depth can solve the issues

Advanced Graphics Port (AGP)

- 1. Introduced by Intel
- 2. Provides a 32-bit video channel
- 3. Runs at 66 MHz in basic 1x video mode
- 4. Maximum throughput of 266 MBps
- 5. The standard also supports three high-speed modes:
 - A. 2x or 533 MBps
 - B. 4x or 1.07 GBps
 - C. 8X or 2.14 GBps

- 6. Provides a direct channel between the graphics controller and the computer system main memory
- Removes video data traffic from PCI buses

PCI Express (PCIe)

- 1. High-speed serial bus
- Designed to replace the older PCI and AGP
- 3. Four modes:
 - A.1x
 - B.4x
 - **C**.8x
 - D.16x
- 4. Fastest graphic performance

Video Capture Cards

- Responsible for converting video signals
- Uses an analog-to-digital (A-to-D) converter
- 3. A TV tuner card

Understanding RAMDAC Chip

- 1. Reads, converts, and sends
- 2. Quality impacts
 - A.Quality of the image
 - B. Refresh rate
 - C.Resolution

Understanding Video Memory

- 1. Video memory renders the image
- 2. Basic element is a dot or pixel)
- 3. Location reserved in video memory
- 4. The number of dots relates to the resolution
- 5. Resolution expressed as a pair of numbers

KVM Switch

- 1. Stand for Keyboard, Video and Mouse
- 2. Hardware device
- 3. Controls multiple computers from one terminal
- 4. Only one computer controlled at a time
- 5. Can share peripherals

Cable Technology

VGA

- 1. Red, green and blue color signals
- 2. Two lines for horizontal and vertical sync signals
- 3. Composite video signal
- 4. More pixels than a TV
- 5. Converts Digital signal to Analog
- 6. Signal degrades as the cable length increases

Cable Technology

Digital Video Interface (DVI)

- 1. Designed for Digital
- 2. Does not degrade

DVI Connectors

- 1. Connector on computer is female
- 2. Uses DVI-native digital video signals
- 3. Dual-link systems
- 4. Can pass legacy analog signals (VGA)
- 5. DVI is universal
- 6. Three types of connectors:
 - A. DVI-I (digital and analog)
 - B. DVI-D (digital only)
 - C.DVI-A (analog only)

Cable Technology

High-Definition Multimedia Interface (HDMI)

- 1. Compact audio/video interface
- 2. Transferring uncompressed video and audio data
 - A. Several types of cable connectors
 - B. Video formats
 - C. Standard
 - D. Enhanced
 - E. High definition
 - F. 3D video
- 3. Up to 8 channels of compressed or uncompressed digital audio
- 4. Devices can control each other
- 5. Backward compatible

Component Video

Component video

- Signal split into three separate component channels
 - A.Red, Green, and Blue
- 2. Does not carry audio
- 3. Better quality that VGA but less than DVI and HDMI

Refresh Rate

- 1. Number of times an image is drawn each second
- 2. Control flicker
- 3. Set as high as possible
- 4. Low rate causes flickering
- 5. Rates:
 - A. 60 Hz minimum
 - B. 72 Hz better
 - C.120 Hz
 - D.240 Hz

Painting the Picture

1. Interlacing

- A. Paints every other line
- B. Second pass fills in
- C.Alternates back and forth

2. Progressive

- A.Paints every line
- B. Significantly reduces flicker

Color or Bit Depth

- 1. Bits describe color
- 2. Monitors use additive color
- 3. Displays three primary colors
 - A. red, green and blue
- 4. Bit-depth
 - A.2-bit monochrome
 - B. 8-bit **VGA** (256 colors)
 - C.16-bit **high color** (65,536 colors)
 - D.24-bit **true color** (16,777, 216 colors)
 - Greater computing performance
 - E.32-bit true color + alpha channel

Dot Pitch

- Diagonal distance between the same color phosphor dots (pixels)
- Smaller dot pitch = sharpness
- 3. Usually .28mm or smaller
- 4. Dots-per-inch (dpi)
 - A. Combination and physical screen size
- Native resolution provides best quality display

Aspect Ratio

- 1. Screen width relative to height
- 2. Standardized at 4 to 3 (4:3).
- 3. Newest is 16:9
 - A.Adapted from film
- 4. Measured diagonally

Display Technology

- 1. The monitor, video card, and CPU all work together
- 2. Types of monitors:
 - A.Cathode Ray Tube (CTR)
 - B.Liquid Crystal Display (LCD)
 - C.Light-Emitting Diode(LED)
 - D.Plasma

Cathode Ray Tube (CRT) Displays

- 1. Older projection technology
- 2. Used in older television sets and monitors
- 3. Bulky
- 4. Contain hazardous voltages

Liquid Crystal Display (LCD) Displays

- 1. Utilize two sheets of polarizing material with a liquid crystal solution between them
- 2. Electric current causes the crystals to align
- 3. Uses a back light to make the image
- 4. Techniques for producing color:
 - A. Passive matrix
 - **B.**Active-matrix
- 5. Used in desktop, laptop and notebook computers
- 6. Take up less space
- 7. Lighter

Light Emitting Diode (LED) Displays

- 1. Also known as Organic Light Emitting Diode (OLED)
- Sandwiches carbon-based films between two charged electrodes
- 3. Voltage creates light
- 4. Red, green, and blue diodes
- 5. Small LED panels are combined to make larger displays
- 6. Typically used outdoors
- 7. Largest at Cowboys Stadium 160 ft x 72 ft

Plasma Displays

- 1. Sandwiches neon/xenon gas mixture between two sealed glass plates
- 2. Uses parallel electrodes that form right angles
- Plates are sealed
- 4. Produces ionized plasma which emits UV radiation
- Radiation activates color phosphors and visible light is emitted from each pixel
- 6. Highest power consumption
- Capable of producing deeper blacks
- 8. Superior contrast ratio
- Wider viewing angles
- 10. Less visible motion blur
- 11. High refresh rates
- 12. Faster response time
- 13. Used for larger monitors and TVs

Touchscreen Monitors

- 1. LCD monitor with integrated mouse
- 2. Uses a USB connection
- 3. Requires special driver
- 4. Translates touch

HOW TO EVALUATE AND PURCHASE COMPUTER COMPONENTS

Customer Requirements

- 1. Talk to your customer
- 2. What are their expected uses?
 - A. What is your budget?
 - B. How will you use this computer?
 - C. Where will you use this computer?
 - D. What operating system do you require?
 - E. How much storage space do you require?
 - F. What applications will you need to run?
 - G. Other user requirements
- 3. Acquire the appropriate parts

Case

- 1. Does the overall dimensions fit the space you have allotted?
- 2. Does it have the appropriate number and size of drive bays?
- 3. Construction of the case itself. Aluminum, metal, or plastic?
- 4. Does the motherboard fit the case?
- 5. Does the have the appropriate front panel connectors?
- 6. Does it already have a power supply installed? Is it the correct wattage?
- 7. What type of processor cooling does it support? Air cooled or water cooled?
- 8. Can it maintain positive air pressure?
- 9. Do you have space the appropriate case fans?

Motherboard

- 1. Form Factor Will it fit into the case?
- 2. CPU Socket Type Does it match the processor socket type?
- 3. CPU Type Is it compatible with the processor manufacturer and socket type?
- 4. Power How much power does it need to operate? Is the power supply wattage correct?
- 5. Memory What type, pinout and speed will it support?
- 6. What built in expansion capabilities do you require?
- 7. What on-board capabilities does it have?
- 8. What I/O ports are present on the rear panel and for the on-board expansion?

1/0

- Does the motherboard support all your I/O needs and capabilities?
- 2. Are there appropriate slots available on the motherboard for expansion?
- 3. Video Does the built-in video meet the resolution, frame rate, and connections needed to support the monitor you have and the applications you will run?
- 4. Sound Does the sound card meet the speaker configuration and capabilities needed to support the applications and playback?
- 5. Network Does the network card meet the connection type, speed, and quantity to support the specifications?
- 6. Are there any other connections not built-in to the motherboard you need to add?

Processor

- 1. Model Does the manufacturer and type match the motherboard?
- 2. CPU Socket Type Does the socket and pin-out match the motherboard?
- Operating Frequency How fast is the processor?
- 4. FSB IS the front side bus compatible with the motherboard?
- 5. Power Does the power supply have enough wattage to support this processor?
- 6. Cache How much onboard cache memory is available? The more the better.
- 7. Capabilities Does it have the capabilities you need to support the operating system and programs you want to run?
- 8. Cooling Is cooling provided? Does it meet the operating temperate you want to maintain?

Cooling

- 1. Determine the cooling needed. Liquid or air?
- 2. Calculate the cooling efficiency of a processor and heat-sink?
- 3. Do you have thermal paste?

Memory

What do you:

- 1. Type Is it compatible with the motherboard and chipset?
- 2. Capacity Is there slots available and does it fit the capacity set by the chipset?
- 3. Speed Does the motherboard support the speed?
- 4. Power Does the power supply have enough wattage to support this memory?

Storage

- Type Does it meet your needs: optical, mechanical, solid state?
- 2. Capacity Does it meet you needs?
- 3. Speed Does it's read and write speeds meet your specifications?
- 4. Interface Does it have an interface of the right speed and type to connect to the motherboard?
- 5. Form Factor Are the right size slots available in the case?
- 6. Power Does the power supply have enough wattage to support your drives?

Expansion Cards

- 1. Video Card Does it support the slot type you have? Does it have the correct interface? Does it have the appropriate frame rate and resolution?
- 2. Sound Card Does it support the slot type you have? Does it have the appropriate speaker configurations and connectors?
- 3. Network Interface Card Does it support the slot type you have? Does it have the appropriate speed and interface?
- 4. Other

Power Supply

- 1. Does it have the right connectors to connect to the motherboard?
- 2. Does it have the right connectors and amount to connect to all the drives?
- 3. Does it have the correct wattage to support all the installed components?

Other

What other components do you need?

- 1. Monitor
- 2. Keyboard
- 3. Mouse
- 4. Printer
- 5. External drive
- 6. Scanner
- 7. Wireless
- 8. Modem

Summary

In the module we discussed:

- 1. Audio/Video components and standards
- 2. VGA mode
- 3. Bus types
- 4. Cabling types
- 5. Monitor standards
- 6. Display types
- 7. Customer requirements
- 8. How to buy components