
2.1 Understand the Fundamentals of Classes

2.2 Understand Inheritance

2.3 Understanding Polymorphism

2.4 Understand Encapsulation

MTA Software Fundamentals 2 Test

98-361 Software Development Fundamentals

L E S S O N 2

Understand the
Fundamentals of Classes

98-361 Software Development Fundamentals

L E S S O N 2 . 1

98-361 Software Development Fundamentals

Lesson Overview

Students will understand the fundamentals of classes.

In this lesson, you will learn:

 Properties, methods, events, and constructors

 How to create a class

 How to use classes in code

L E S S O N 2 . 1

98-361 Software Development Fundamentals

Review Terms

 Class—in object-oriented programming, a generalized category
that describes a group of more specific items, called objects, that
can exist within it.

 Constructor—a method that allows the programmer to set default
values, limit instantiation, and write code that is flexible and easy
to read. A default constructor has zero parameters.

 Event—an action or occurrence, often generated by the user, to
which a program might respond (for example, key presses, button
clicks, or mouse movements).

 Method—in object-oriented programming, a process performed
by an object when it receives a message.

L E S S O N 2 . 1

98-361 Software Development Fundamentals

Review Terms

 Object—1. short for object code (machine-readable code). 2. In
object-oriented programming, a variable comprising both
routines and data that is treated as a discrete entity.

 Object-oriented programming—a programming paradigm in
which a program is viewed as a collection of discrete objects that
are self-contained collections of data structures and routines that
interact with other objects.

 Property—members of a class that provide a flexible mechanism
to read, write, or compute the values of private fields. Properties
are viewed or accessed by “accessor” methods within the class
and are changed or modified by “modifier” methods within the
class.

L E S S O N 2 . 1

98-361 Software Development Fundamentals

Objects and Classes—The Relationship

 Objects are instances of a given data type. The data type provides a
blueprint for the object that is created—or instantiated—when the
application is executed.

 New data types are defined using classes.

 Classes form the building blocks of applications, containing code
and data. An application will always contain at least one class.

L E S S O N 2 . 1

98-361 Software Development Fundamentals

Objects and Classes—A Comparison

 An object belongs to a class and is an instance of that class. The
class is the blueprint of the object and defines the fields and
methods.

 The object exists during the time that a program executes and must
be explicitly declared and construed by the executing program. For
most programming languages, a class cannot be changed during
program execution.

 Classes have fields that can change in value and methods that can
execute during program execution. The class to which the object
belongs defines these attributes and methods.

L E S S O N 2 . 1

98-361 Software Development Fundamentals

L E S S O N 2 . 1

 Properties can be used as though they are public data members, but
they are actually special methods called accessors. This enables
data to be accessed easily while still providing the safety and
flexibility of methods.

 Constructors are class methods that are executed when an object of
a given type is created. Constructors have the same name as the
class and usually initialize the data members of the new object.

98-361 Software Development Fundamentals

Inside a Method

public Sub Magnify(factor as Integer)

length = length * factor;

width = width * factor;

End Sub

Access modifier Return type Method name Parameter

L E S S O N 2 . 1

A method is a code block containing a series of statements. Every executed

instruction is performed in the context of a method.

98-361 Software Development Fundamentals

Student Lab 2.1

L E S S O N 2 . 1

98-361 Software Development Fundamentals

Understand Inheritance

98-361 Software Development Fundamentals

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Lesson Overview

Students will understand the concepts associated with inheritance in object-
oriented programming.

In this lesson, students will learn:

 The “is-a” relationship

 How to create class hierarchies through inheritance

L E S S O N 2 . 2

98-361 Software Development Fundamentals

The “is-a” Relationship

 A Mammal “is-a” Animal.

 A Dog “is-a” Mammal.

 A Cat “is-a” Mammal.

Mammal

Dog Cat

Animal

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Review Terms

 Abstract class - a class from which no objects can be created.

 Used to defined subclasses.

 Objects are created from the subclasses.

 Base class - a class from which other classes have been or can be
derived by inheritance.

 Derived class - a class created from another class, referred to as
the base class.

 A derived class inherits all the features of its base class.

 It can include additional data elements and routines, redefine
routines from the base class, and restrict access to base class
features.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Review Terms (continued)

 Inheritance - the transfer of the characteristics of a class to other
classes derived from it.

 Example: If “vegetable” is a class, the classes “legume” and
“root” can be derived from it, and each will inherit the
properties of the “vegetable” class.

• Inherited properties might include name, growing season, and water
requirements.

 Interface - contains only the signatures of methods, delegates, or
events.

 The implementation of the methods is created in the class that
implements the interface.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Inheritance

 Classes can inherit from another class. The syntax requires a colon
after the class name in the declaration, and identifying the class to
inherit from—the base class—after the colon, as follows:

public class A

public A() { }

public void doA(){ }

public class B : A

public B() { }

public void doB(){ }

Base class

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Inheritance (continued)

 The new class—the derived class—then includes all the non-private
data and behavior of the base class, in addition to any other data or
behaviors that it defines for itself. The new class then has two
effective types: the type of the new class and the type of the class
that it inherits.

public class A

public A()

public void doA()

public class B : A

public B()

public void doB()

Derived class

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Inheritance (continued)

public class Tester

A = new A()

B = new B()

b.doB() ‘legal

b.doA() ‘legal

a.doA() ‘legal

a.doB() ‘illegal

B is derived from A, so it can

doA(), but A is not derived from

B, so it cannot doB(). The

inheritance relationship is not

reciprocal.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Inheritance (continued)

 In the previous examples, class B is effectively both type B and
type A. When you access a B object, you can use the cast operation
to convert it to an A object. The B object is not changed by the cast,
but your view of the B object becomes restricted to A's data and
behaviors.

 Multiple inheritance is not supported. A class can inherit from only
one other class.

B = new B()

A = (A)b; ‘B object being cast as an A object

‘this is ok because B “is-a” A

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Interfaces

 Are defined using the interface keyword.

 Describe a group of related behaviors that can belong to any class.

 Can be made up of methods, properties, events, indexers, or any
combination of those four member types.

 Cannot contain fields.

 Members are automatically public.

 A class can inherit more than one interface.

 When a class inherits an interface, it inherits only the method
names and signatures because the interface itself contains no
implementations.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

interface IComparable

int CompareTo(object obj);

public class Minivan : Car, IComparable

public int CompareTo(object obj)

‘implementation of CompareTo

Minivan inherits from

Car and implements

the IComparable

interface.

Interfaces and interface

members are abstract; they do

not provide a default

implementation.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Abstract Classes

 The abstract keyword enables you to create classes and class
members solely for the purpose of inheritance—to define features
of derived classes.

 An abstract class cannot be instantiated. The purpose of an
abstract class is to provide a common definition of a base class that
multiple derived classes can share.

 Abstract classes may also define abstract methods. This is
accomplished by adding the keyword abstract before the return
type of the method.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

public abstract class A

public abstract void DoWork(int i);

Abstract methods have no implementation,

so the method definition is followed by a

semicolon instead of a normal method

block. Derived classes of the abstract class

must implement all abstract methods.

Classes can be declared as

abstract by putting the keyword
abstract before the keyword

class in the class definition.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Review of Interfaces

 An interface is similar to an abstract base class.

 Any non-abstract type inheriting the interface must implement all
its members.

 An interface cannot be instantiated directly.

 Interfaces can contain events, indexers, methods, and properties.

 Interfaces cannot contain implementation of methods.

 Classes can inherit from more than one interface.

 An interface can itself inherit from multiple interfaces.

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Abstract Classes

 Can have implementation
code

 Use to provide related
derived classes with common
method signatures, and also
common methods and
instance variables

 Can contain instance
variables

 Can declare constants

Interfaces

 Are fully abstract

 Are used to represent a set of
abstract behaviors that can be
implemented by unrelated
classes

 Cannot contain instance
variables

 Can declare constants

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Student Lab 2.2

L E S S O N 2 . 2

98-361 Software Development Fundamentals

Understanding Polymorphism

(with Visual Basic)

98-361 Software Development Fundamentals

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Lesson Overview

Students will understand polymorphism.

In this lesson, you will learn about:

 Extending the functionality in a class after inheriting from a base class

 Overriding methods in a derived class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Review Terms

 MyBase—a keyword is used to access members of the base class
from within a derived class.

 New—when used as a modifier, this keyword explicitly hides a
member inherited from a base class. When you hide an inherited
member, the derived version of the member replaces the base-
class version.

 Overrides—a modifier required to extend or modify the
abstract or virtual implementation of an inherited method,
property, indexer, or event.

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Review Terms (continued)

 polymorphism—the ability to redefine a method in a derived
class (a class that inherited its data structures and methods from
another class).

 A class can be used as more than one type; it can be used as its
own type, any base types, or any interface type if it implements
interfaces.

 NotOverridable—cannot be inherited. A sealed method
overrides a method in a base class, but itself cannot be overridden
further in any derived class.

 Overridable—a keyword used to modify a method or
property declaration, in which case the method or the property is
called a virtual member.

 — The virtual member allows its implementation to be replaced
within derived classes.

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Polymorphism

 Refers to the ability to redefine methods in a derived class and
use a class as more than one type; it can be used as its own type,
any base types, or any interface type if it implements interfaces.

 Is important not only to the derived classes, but to the base
classes as well. Using the base class could be the same as using
an object of the derived class that has been cast to the base class
type.

 When a derived class inherits from a base class, it gains all the
methods, fields, properties, and events of the base class.

 To change the data and behavior of a base class, you have two
choices: You can replace the base member with a new derived
member, or you can override a virtual base member.

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using the Shadows Keyword

 Replacing a member of a base class with a new derived member
requires the Shadows keyword.

 If a base class defines a method, field, or property, the Shadows
keyword is used to create a new definition of that method, field,
or property in a derived class.

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using the Shadows Keyword (continued)

The Shadows keyword is placed before the return type of a class
member that is being replaced:

Public Class BaseClass

Public Function WorkField() As Integer

End Function

Public Sub DoWork() End Sub

End Class

Public Class DerivedClass : Inherits BaseClass

Public Shadows Function WorkField() As Integer

End Function

Public Shadows Sub DoWork() End Sub

End Class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using the Shadows Keyword (continued)

 When the Shadows keyword is used, the new class members are
called instead of the base class members that have been replaced.

 Those base class members are called hidden members. Hidden class
members can still be called if an instance of the derived class is cast
to an instance of the base class.

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using Overridable and Overrides Keywords

 For an instance of a derived class to completely take over a class
member from a base class, the base class has to declare that member as
Overridable in VB.

 A derived class then uses the Overrides keyword, instead of new, to
replace the base class implementation with its own.

Public Class BaseClass

Public Function WorkField() As Integer End Function

Public Overridable Sub DoWork() End Sub

End Class

Public Class DerivedBlass : Inherits BaseClass

Public Function WorkField() As Integer End Function

Public Overrides Sub DoWork() End Sub

End Class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using Overridable and Overrides Keywords

(continued)

 Fields cannot be virtual; only methods, properties, events, and indexers
can be virtual.

 When a derived class overrides a virtual member, that member is called
even when an instance of that class is being accessed as an instance of
the base class.

DerivedClass B = new DerivedClass();

B.DoWork(); // Calls the new method

BaseClass A = (BaseClass) B;

A.DoWork(); // Also calls the new method

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Virtual members remain virtual

 If class A declares a virtual member, class B derives from A, and
class C derives from B, class C inherits the virtual member and has
the option to override it, regardless of whether class B declared an
override for that member.

Public Class A

Public Overridable Sub DoWork() End Sub

End Class

Public Class B : Inherits A

Public Overrides Sub DoWork() End Sub

End Class

Public Class C : Inherits B

Public Overrides Sub DoWork() End Sub

End Class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using the NotOverridable Keyword

 A derived class can stop virtual inheritance by declaring an override
as NotOverridable

 In the code samples below, the method DoWork is no longer virtual
to any class derived from C. It is still virtual for instances of C, even
if they are cast to type B or type A.

Public Class A

Public Overridable Sub DoWork() End Sub

End Class

Public Class B : Inherits A

Public Overrides Sub DoWork() End Sub

End Class

Public Class C : Inherits B

Public NotOverridable Overrides Sub DoWork() End Sub

End Class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using the NotOverridable Keyword (continued)

 Sealed methods can be replaced by derived classes using the Shadows
keyword.

 If DoWork is called on D using a variable of type D, the new
DoWork is called. If a variable of type C, B, or A is used to access an
instance of D, a call to DoWork will follow the rules of virtual
inheritance, routing those calls to the implementation of DoWork on
class C.

Public Class C : Inherits B

Public NotOverridable Overrides Sub DoWork() End Sub

End Class

Public Class D : Inherits C

Public Shadows Sub DoWork() End Sub

End Class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Using the MyBase Keyword

 A derived class that has replaced or overridden a method can still
access the method on the base class using the MyBase keyword.

Public Class A

Public Overridable Sub DoWork() End Sub

End Class

Public Class B : Inherits A

Public Overrides Sub DoWork() End Sub

End Class

Public Class C : Inherits B

Public Overrides Sub DoWork()

MyBase.DoWork() ‘ B’s DoWork()

‘ Behaviors specific to C’s DoWork()

End Sub

End Class

L E S S O N 2 . 3

98-361 Software Development Fundamentals

No Student Lab 2.3

L E S S O N 2 . 3

98-361 Software Development Fundamentals

Understand Encapsulation

98-361 Software Development Fundamentals

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Lesson Overview

Students will understand encapsulation in object-oriented programming.

In this lesson, you will learn about:

 Creating classes that hide their implementation details while still allowing
access to the required functionality through the interface

 Access modifiers

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Review Terms

 Encapsulation - In object-oriented programming, encapsulation
packages attributes (properties) and functionality (methods or
behaviors) to create an object that is essentially a “black box”—
one whose internal structure remains private and whose services
can be accessed by other objects only through messages passed
by a clearly defined interface. Also known as information hiding.

 Internal - An access modifier for classes and class members.
Internal members are accessible only within files in the same
assembly.

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Review Terms (continued)

 Private - a member access modifier. Private access is the least
permissive access level. Private members are accessible only
within the body of the class in which they are declared.

 Protected - a member access modifier. A protected member is
accessible from within the class in which it is declared, and from
within any class derived from the class that declared this
member.

 Public - an access modifier for classes and class members.
Public access is the most permissive access level. There are no
restrictions on accessing public members.

L E S S O N 2 . 4

98-361 Software Development Fundamentals

What is encapsulation?

 Encapsulation allows the programmer to hide (encapsulate) some
of the data and functionality of a class while revealing others.

 Data fields are made private to restrict access to within the class,
but they are partnered with accessible (public) methods that
provide a gateway to the data.

 A method within a class can be called by other classes, but the
actual implementation of the method is hidden within the class.

 This allows you to change the code of the method from within
the class without affecting the code of the classes outside the
class.

 It is now easier to edit or enhance a program because you can
localize your changes to particular classes.

L E S S O N 2 . 4

98-361 Software Development Fundamentals

What is encapsulation? (continued)

 The fields and methods pertaining to a student record are
encapsulated within the Student class.

 The private data fields are accessed by the public methods.

Student

private int id

public int getId()

public void setId()

L E S S O N 2 . 4

98-361 Software Development Fundamentals

What is encapsulation?

 To change the id field, another class has to call the public
setID method, which protects the id field from invalid
numbers.

public class Student

private int id
public int getID()

return id

public void setID(int number)
‘only allow positive numbers
if (id > 0)

id = number

End Class

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Encapsulation with Properties
 Properties enable a class to expose a public way of getting and

setting values while hiding implementation or verification.

 The value keyword is used to define the value being assigned
by the set indexer.

 Properties that do not implement a set method are read-only.

 Properties that do not implement a get method are write-only.

public class Student

public int Id
get

return id

set

if (id > 0)
id = value

End class

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Encapsulation deals with access

 Class members can be declared with any of the five types of access:
public, private, protected, internal, protected
internal

 The accessibility of a member can never be greater than the accessibility
of its containing type. For example, a public method declared in an
internal type has only internal accessibility.

public class Tricycle

protected void Pedal()
private int wheels = 3
protected internal int Wheels

get

return wheels

End class

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Using the public keyword

 The public keyword is an access modifier for types and type
members. Public access is the most permissive access level.

public class Sample

public int x

public class MainClass

public static void Main()

Sample s = new Sample()

// direct access to public members

s.x = 15

End class

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Using the private keyword

 When the private keyword is used, members are accessible only
within the body of the class in which they are declared.

public class Sample

private int x

public class MainClass

public static void Main()

Sample s = new Sample()

‘private denies access

s.x = 15 ‘won’t compile

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Using the protected keyword

 A protected member is accessible within its class and by derived

class instances.

 A protected member of a base class is accessible in a derived class

only if the access occurs through the derived class type.

public class A

protected int x = 123

public class B : A

public class Driver

public static void Main()

A = new A()

B = new B()

A.x = 10 ‘error

B.x = 10 ‘OK

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Using the internal keyword

 Internal types or members are accessible only within files in the

same assembly.

 A common use of internal access is in component-based
development because it enables a group of components to cooperate
in a private manner without being exposed to the rest of the
application code.

 For example, a framework for building graphical user interfaces
(GUIs) could provide Control and Form classes that cooperate by
using members with internal access. Since these members are
internal, they are not exposed to code that is using the framework.

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Using the internal keyword (continued)

 This example contains two files in different assemblies,
Assembly1.cs and Assembly2.cs.

 The first file contains an internal base class, BaseClass. In the
second file, an attempt to instantiate BaseClass will produce an

error.

‘Assembly1.cs, compile with: /target:library

internal class BaseClass

public static int x = 0

‘Assembly2.cs, compile with: /reference:Assembly1.dll

public class TestAccess

public static void Main()

BaseClass myBase = new BaseClass() ‘error

L E S S O N 2 . 4

98-361 Software Development Fundamentals

No Student Lab 2.4

L E S S O N 2 . 4

98-361 Software Development Fundamentals

Complete the QUIZ Test

MTA Software Fundamentals 2 Test

98-361 Software Development Fundamentals

L E S S O N 2

http://www.quia.com/quiz/4202188.html

