
3.1 Understand Application Lifecycle Management

3.2 Interpret Application Specifications

3.3 Understanding Algorithms and Data Structures

MTA Software Fundamentals 3 Test

98-361 Software Development Fundamentals

L E S S O N 3

Understand Application
Lifecycle Management

98-361 Software Development Fundamentals

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Lesson Overview

Students will understand application lifecycle management (ALM).

In this lesson, you will learn about:

 The phases of ALM

 Software testing

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Review Terms

 Application Lifecycle Management (ALM)—a combination of
business management practices and software engineering. ALM
phases are Envisioning, Designing, Developing, Testing, and
Maintenance. Also known as Software Development Life Cycle.

 Test—to check program correctness by trying out various
sequences and input values.

 UML—acronym for Unified Modeling Language, a language
used for specifying, building, and documenting software and
non-software systems, such as business models. UML notation
provides a common foundation for object-oriented design by
providing descriptions of modeling concepts, including object
class, associations, interface, and responsibility.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

What is ALM?

 A combination of business management practices and
software engineering.

 ALM phases can be split into five phases:

 Envisioning, Designing, Developing, Testing, and
Maintenance

 The objective is to model the full cycle through which
software is developed, managed, and deployed.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Benefits of Collaboration within the ALM

 Increases productivity, as the team shares best practices for
development and deployment, and developers can focus on
current business requirements

 Reduces the number of deficiencies due to miscommunication

 Catches inconsistencies between requirements

 Accelerates development

 Cuts maintenance time by synchronizing application and design

 Increases flexibility by reducing the time it takes to build and
adapt applications that support new business initiatives

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Envisioning

 Customer needs are evaluated and criteria are
established to track the project’s progress.

 Business case development

 Costs, benefits, and return on investment are weighed.

 Plans are developed for delivering the product.

 Breaking the project down into shippable increments

 Processes are developed to measure the quality of the
product and the efficiency of the team in developing
working software.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Design

 Create models to ensure that the software system
meets users’ needs.

 The models are developed to different levels of detail
and are related to one another, to tests, and to the
development plan.

 In the early stages of the project, the overall
requirements, design, and tests are developed at an
outline level.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Unified Modeling Language (UML)

 UML is used for specifying, building, and
documenting software systems.

E-mail

int id

Account

void send()

Address

int destination

void report()

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Development

 Write and document the code.

 Write and perform unit tests.

 Identify the tests that must be run if you make a particular
change.

 Debug and analyze the code.

 Associate your code changes with specific tasks and bugs.

 Plan and track your progress against your schedule.

 This process is iterative.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Testing

 Unit testing

 Testing of classes happens separately from the
testing of the program as a whole.

 Integration testing

 Units of software are combined and tested as a
group.

 Regression testing

 Old tests are applied old tests to new versions of the
program.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Unit Testing

 A unit test can test a whole class, a group of methods,
or even a single method.

 Method stubs help keep test cases independent from
one another.

 A test harness can be used to call a method with
supplied parameters and compare the results to desired
values.

 The benefit is that each individual part of a program
can be shown to be correct before they interact with
one another.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Integration Testing

 In its simplest form, two units that have already been
tested are combined into a component and the
interface between them is tested.

 A component, in this sense, refers to an integrated
aggregate of more than one unit.

 Many units are combined into components, which are
in turn aggregated into even larger parts of the
program.

 The idea is to test combinations of pieces and
eventually expand the process to test modules with
those of other groups.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Regression Testing

 Occurs after a number of failures in previous versions
of the software have been discovered and fixed.

 Tests were created as these bugs were found, to verify
that the bug fixes really worked.

 These tests are added to a set of tests referred to as a
regression test suite.

 These tests are collected into a test suite, a set of tests
for repeated testing.

 The idea is that when changes are made to create new
versions of the program, tests that used to succeed
may no longer succeed.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Maintenance

 The deployed application is monitored and managed.

 Updates are made accordingly to cope with new
problems (bugs).

 Robust testing will decrease the amount of
maintenance.

 New requirements and problems are dealt with
separately.

 The new requirements go into the next release while
the bug fixes are applied to the current release.

L E S S O N 3 . 1

98-361 Software Development Fundamentals

No Student Lab 3.1

L E S S O N 3 . 1

98-361 Software Development Fundamentals

Interpret Application
Specifications

98-361 Software Development Fundamentals

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Lesson Overview

Students will interpret application specifications.

In this lesson, you will learn about:

 Reading and translating specifications into prototypes, code, and
components

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Review Terms

 Application—a program designed to assist in the performance of a
specific task, such as word processing, accounting, or inventory
management.

 Component—an individual modular software routine that has been
compiled and dynamically linked and is ready to use with other
components or programs.

 Database—a collection of tables composed of records, each
containing fields together with a set of operations for searching,
sorting, recombining, and other functions.

 Service—in reference to programming and software, a program or
routine that provides support to other programs.

 Web application—a set of clients and servers that cooperate to
provide the solution to a problem.

L E S S O N 3 . 2

98-361 Software Development Fundamentals

What is an application specification?

 It describes the technical requirements of an application.

 It can also be specifically targeted at providing the information
that developers require to make their application compatible with
other applications or systems.

 Example: When Microsoft Windows Server 2003 was
launched, it came with an application specification describing
requirements that applications must meet to be certified.

 The application specification describes the problem that needs to
be solved and conveys the requirements to the programmer.

 The goal is to provide the programmer with the information
required to implement an appropriate solution.

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Types of Applications

 Windows service

 Web application

 Web service

 Windows Form application

 Console application

 Database application

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Windows Service

 An executable that carries out specific functions and is designed
to not require user involvement.

 Windows Service executables often are configured to start
alongside the operating system and run in the background.

 Why a Windows Service?

 When you want a program to start automatically when the
operating system starts

 When your program does not require user interaction, and
therefore may not need a user interface

 When you need long-running functionality

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Web Application

 An application accessed using a Web browser

 Usually composed of three tiers:

 The Web browser (example: Windows Internet Explorer)

 The Web content engine (example: ASP.NET)

 The database (example: Microsoft SQL Server)

 Why a Web application rather than a traditional application?

 Easy to update and maintain

 Cross-platform compatibility

 Examples: Web mail, online sales

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Web service

 A Web service provides the ability to exchange
messages in a loosely coupled environment using
standard protocols such as Hypertext Transfer Protocol
(HTTP) and Extensible Markup Language (XML).

 A Web service enables the exchange of data and the
remote invocation of application logic using XML
messaging to move data through firewalls and between
heterogeneous systems.

 The only assumption made between the client and the
server is that recipients will understand the messages
that they receive.

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Windows Form Application

 A Windows Form application is a graphical
application in which information is displayed and
controls are provided to interact with data.

 Why use a Windows Form?

 The interface corresponds to the operating system,
so the application is integrated with the desktop.

 Consistent user interface.

 Higher processing demand.

 Security and reliability is important.

 Does not require an Internet connection.

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Console Application

 A Console application is a computer program
designed to be used through a text-only computer
interface.

 Why use a Console application?

 A mouse or pointing device is not required.

 Speed of deployment.

 Ease of use.

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Database Application

 A database application obtains and manipulates data
from a database managed by a database management
system (DBMS).

 Typical database applications include programs for
data input, data viewing, and batch processing of data.

 Why use a database application?

 Large amount of data to be stored and retrieved

 Client/server interaction

L E S S O N 3 . 2

98-361 Software Development Fundamentals

No Student Lab 3.2

L E S S O N 3 . 2

98-361 Software Development Fundamentals

Understanding Algorithms
and Data Structures

98-361 Software Development Fundamentals

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Lesson Overview

Students will understand algorithms and data structures

In this lesson, you will learn about:

 Arrays

 Stacks

 Queues

 Linked lists

 Sorting algorithms

 Performance implications of various data structures

 Choosing the right data structure

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Review Terms

 array – a list of data values, all of the same type, any element of
which can be referenced by an expression consisting of the array
name followed by an indexing expression.

 data structure – an organizational scheme, such as a record or
array, that can be applied to data to facilitate interpreting the data
or performing operations on it.

 linked list – a list of nodes or elements of a data structure
connected by pointers.

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Review Terms

 queue – a multi-element data structure from which (by strict
definition) elements can be removed only in the same order in
which they were inserted; that is, it follows a first-in-first-out
(FIFO) constraint.

 sort algorithm – an algorithm that puts a collection of data
elements into some sequenced order, sometimes based on one or
more key values in each element.

 stack – represents a variable size last-in-first-out (LIFO)
collection of instances of the same arbitrary type.

L E S S O N 3 . 3

98-361 Software Development Fundamentals

What is a data structure?

 Classes used to organize data and provide various
operations upon that data

 The type of data structure used for an algorithm can
determine its performance

 Choice of data structure is dependent on the context

 A stack is best when you want the elements to
be accessed in a last-in-first-out order

 A linked list is best when there will be a number
of insertions into the data structure

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Arrays

 Arrays are one of the simplest and most widely used data
structures in computer programs

 Arrays in any programming language all share a few common
properties:

 The contents of an array are usually stored in contiguous
memory

 All of the elements of an array must be of the same type or
of a derived type; hence arrays are referred to as
homogeneous data structures

 Array elements can be directly accessed. If you know you
want to access the ith element of an array, you can simply
use one line of code: arrayName[i]

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Arrays

 If a specified array index is out of bounds, an
IndexOutOfRangeException is thrown

 To change the number of elements an array holds,
create a new array instance of the specified size, and
then copy the contents of the old array into the new,
resized array

 Searching an unsorted array is acceptable when
working with small arrays, or when performing very
few searches

 If an application stores large arrays that are frequently
searched, there are other data structures better suited
for the job than arrays

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Example: Array code

public static void Main()

dim nums() as Integer = new nums(3)

num(0) = 23

num(1) = 45

num)2) = 19

Console.WriteLine(“Index 0: ” & nums[0])

Console.WriteLine(“Size: ” + nums.Length) for

(int i = 0, i < nums.length; i++)

Console.WriteLine(nums[i]);

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Stacks

 Last-In-First-Out (LIFO) data structure

 Does not allow random access to elements

 Can be visualized graphically as a vertical collection
of items

 When an item is pushed onto the stack, it is placed
on top of all other items.

 Popping an item removes the item from the top of
the stack

 Useful when you need access to the item most
recently added

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Stacks

 The following animation demonstrates items 1, 2, and
3 being pushed onto the stack in that order, and then a
single pop.

1

2

3
Pushing

onto the

stack

1

2

3
A pop

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Example: Stack code

Push(), Pop(), and Count

public static void Main()

Stack myStack = new Stack()

myStack.Push(“1")

myStack.Push(“2")

myStack.Push(“3")

Console.WriteLine(“Last in: ”+myStack.Pop())

Console.WriteLine(“Elements left:

”+myStack.Count)

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Queues

 First-In-First-Out (FIFO) data structure

 Does not allow random access to elements

 Ideal for situations where you are only interested in
processing items in the same order in which they were
received

 Enqueue() and Dequeue() are used to input
and access elements in the data structure

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Queue

 The following animation demonstrates adding items 1,
2, and 3 into the queue (enqueue) and removing an
item (dequeue)

1 2 3
Enqueue

into the

queue

1 2 3
Dequeue

from the

queue

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Example: Queue code

Enqueue(), Dequeue(), and Count

public static void Main()

Queue myQ = new Queue()

myQ.Enqueue(“1")

myQ.Enqueue(“2")

myQ.Enqueue(“3")

Console.WriteLine(“First in: ”+myQ.Dequeue())

Console.WriteLine(“Elements left: ”+myQ.Count)

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Linked Lists

• A list of nodes or elements of a data structure
connected by pointers

 A singly linked list has one pointer in each node
pointing to the next node in the list

 A doubly linked list has two pointers in each node
that point to the next and previous nodes

 In a circular list, the first and last nodes of the list
are linked

 Does not allow random access to elements

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Linked Lists

 Allow more efficient insertion and removal of
elements in the middle of the sequence

 Because only links are changed, an insertion or
removal only affects the neighbors of the inserted
or removed element, and does not affect the entire
structure

 Insertion and removal is independent of the number of
elements in the list, assuming the spot of insertion or
deletion is located

 Searching for an element has a linear relationship to
the number of elements

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Example: Linked List code

public static void Main()

LinkedList<String> myList = new LinkedList

<String>()

myList.AddFirst(“one")

myList.AddLast(“two")

Console.WriteLine(“First spot:

”+myList.RemoveFirst())

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Sorting Algorithms

 Steps that put a collection of data elements into some
sequenced order, sometimes based on one or more key
values in each element

 Bubble sort

 Selection sort

 Insertion sort

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Bubble Sort

 Compares each item in the list with the item next to it,
and swapping them if needed

 In one pass, the largest number will eventually end up
in the last spot (if the list is being sorted smallest to
largest)

 Repeats this process N-1 times, where N is the number
of items to sort

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Bubble Sort:

5 6 9 7 2 1

5 6 7 2 1 9

5 6 2 1 7 9

5 2 1 6 7 9

2 1 5 6 7 9

1 2 5 6 7 9

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Selection Sort

 Finds the smallest number in the list and swapping it
with the number in the index it belongs in

 In each pass, the part of the array that gets scanned for
the smallest number decreases

 Repeats this process N-1 times, where N is the number
of items to sort

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Selection Sort:

5 6 9 7 2 1

1 6 9 7 2 5

1 2 9 7 6 5

1 2 5 7 6 9

1 2 5 6 7 9

1 2 5 6 7 9

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Insertion Sort

 The first element in an array is sorted with respect to
itself. The array can be said to be composed of a
sorted side and an unsorted side

 Elements from the unsorted side are inserted in the
correct order into the sorted side one at a time

 To create the insertion spot, elements are moved down
to make room

 Repeats this process N-1 times, where N is the number
of items to sort

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Insertion Sort:

5 6 9 7 2 1

5 6 9 7 2 1

5 6 9 7 2 1

5 6 7 9 2 1

2 5 6 7 9 1

1 2 5 6 7 9

L E S S O N 3 . 3

98-361 Software Development Fundamentals

Student Lab 3.3

98-361 Software Development Fundamentals

Complete the QUIA Test

MTA Software Fundamentals 3 Test

98-361 Software Development Fundamentals

L E S S O N 3

http://www.quia.com/quiz/4202330.html

