2 98-361 Software Development Fundamentals

98-361 Software Development Fundamentals

Understand Application
Lifecycle Management

Microsoft

08-361 Software Development Fundamentals

_esson Overview

Students will understand application lifecycle management (ALM).

In this lesson, you will learn about:
= The phases of ALM
- Software testing

08-361 Software Development Fundamentals

Review Terms

Application Lifecycle Management (ALM)—a combination of
business management practices and software engineering. ALM
phases are Envisioning, Designing, Developing, Testing, and
Maintenance. Also known as Software Development Life Cycle.

Test—to check program correctness by trying out various
sequences and input values.

- UML—acronym for Unified Modeling Language, a language
used for specifying, building, and documenting software and
non-software systems, such as business models. UML notation
provides a common foundation for object-oriented design by
providing descriptions of modeling concepts, including object
class, associations, interface, and responsibility.

R

08-361 Software Development Fundamentals

What is ALM?

= A combination of business management practices and
software engineering.

- ALM phases can be split into five phases:

= Envisioning, Designing, Developing, Testing, and
Maintenance

- The objective is to model the full cycle through which
software is developed, managed, and deployed.

i N
:: L:'l;.

or)
-

08-361 Software Development Fundamentals

Benefits of Collaboration within the ALM

Increases productivity, as the team shares best practices for
development and deployment, and developers can focus on
current business requirements

Reduces the number of deficiencies due to miscommunication
Catches inconsistencies between requirements

Accelerates development
Cuts maintenance time by synchronizing application and design

Increases flexibility by reducing the time it takes to build and
adapt applications that support new business initiatives

P

AR

08-361 Software Development Fundamentals

Envisioning

« Customer needs are evaluated and criteria are
established to track the project’s progress.

- Business case development
= Costs, benefits, and return on investment are weighed.

- Plans are developed for delivering the product.
= Breaking the project down into shippable increments

= Processes are developed to measure the quality of the
product and the efficiency of the team in developing
working software.

R

08-361 Software Development Fundamentals

Design

= Create models to ensure that the software system
meets users’ needs.

- The models are developed to different levels of detail
and are related to one another, to tests, and to the
development plan.

- Inthe early stages of the project, the overall
requirements, design, and tests are developed at an
outline level.

©> o U IN O . 4

08-361 Software Development Fundamentals

Unified Modeling Language (UML)

« UML is used for specifying, building, and
documenting software systems.

Account
E-mail Address
int id int destination

void send|) void report()

o U IN O . 4

08-361 Software Development Fundamentals

Development

= Write and document the code.
= Write and perform unit tests.

= |dentify the tests that must be run if you make a particular
change.

« Debug and analyze the code.

= Associate your code changes with specific tasks and bugs.
- Plan and track your progress against your schedule.
This process is iterative.

08-361 Software Development Fundamentals

Testing

= Unit testing

= Testing of classes happens separately from the
testing of the program as a whole.

- Integration testing

= Units of software are combined and tested as a
group.
- Regression testing

= Old tests are applied old tests to new versions of the
program.

i N
:: L:'l;.

08-361 Software Development Fundamentals

Unit Testing

= A unit test can test a whole class, a group of methods,
or even a single method.

- Method stubs help keep test cases independent from
one another.

- Atest harness can be used to call a method with
supplied parameters and compare the results to desired
values.

= The benefit is that each individual part of a program
can be shown to be correct before they interact with
one another.

08-361 Software Development Fundamentals

Integration Testing

= Inits simplest form, two units that have already been
tested are combined into a component and the
Interface between them Is tested.

- A component, in this sense, refers to an integrated
aggregate of more than one unit.

- Many units are combined into components, which are
In turn aggregated into even larger parts of the
program.

- The idea Is to test combinations of pieces and
eventually expand the process to test modules with
those of other groups.

08-361 Software Development Fundamentals

Regression Testing

Occurs after a number of failures in previous versions
of the software have been discovered and fixed.

Tests were created as these bugs were found, to verify
that the bug fixes really worked.

These tests are added to a set of tests referred to as a
regression test suite.

These tests are collected into a test suite, a set of tests
for repeated testing.

The idea Is that when changes are made to create new
versions of the program, tests that used to succeed
may no longer succeed. |

P

AR

08-361 Software Development Fundamentals

Maintenance

- The deployed application is monitored and managed.

- Updates are made accordingly to cope with new
problems (bugs).

- Robust testing will decrease the amount of
maintenance.

- New requirements and problems are dealt with
separately.

= The new requirements go into the next release while
the bug fixes are applied to the current release.

08-361 Software Development Fundamentals

No Student Lab 3.1

98-361 Software Development Fundamentals

Interpret Application
Specifications

Microsoft

08-361 Software Development Fundamentals

_esson Overview

Students will interpret application specifications.

In this lesson, you will learn about:

- Reading and translating specifications into prototypes, code, and
components

08-361 Software Development Fundamentals

Review Terms

- Application—a program designed to assist in the performance of a
specific task, such as word processing, accounting, or inventory
management.

- Component—an individual modular software routine that has been
compiled and dynamically linked and is ready to use with other
components or programs.

- Database—a collection of tables composed of records, each
containing fields together with a set of operations for searching,
sorting, recombining, and other functions.

- Service—in reference to programming and software, a program or
routine that provides support to other programs.

- Web application—a set of clients and servers that cooperate to
provide the solution to a problem.

08-361 Software Development Fundamentals

What is an application specification?

It describes the technical requirements of an application.

It can also be specifically targeted at providing the information
that developers require to make their application compatible with
other applications or systems.

= Example: When Microsoft Windows Server 2003 was
launched, it came with an application specification describing
requirements that applications must meet to be certified.

The application specification describes the problem that needs to
be solved and conveys the requirements to the programmer.

The goal is to provide the programmer with the information
required to implement an appropriate solution. IT.‘--'

— oo U N S 7

08-361 Software Development Fundamentals

Types of Applications

= Windows service

- Web application

- Web service

- Windows Form application

= Console application
Database application

1P

kL

o U IN v

08-361 Software Development Fundamentals

Windows Service

= An executable that carries out specific functions and is designed
to not require user involvement.

= Windows Service executables often are configured to start
alongside the operating system and run in the background.

« Why a Windows Service?

= When you want a program to start automatically when the
operating system starts

= When your program does not require user interaction, and
therefore may not need a user interface

When you need long-running functionality

B A
o o U IN 3 Vi

08-361 Software Development Fundamentals

Web Application

An application accessed using a Web browser

Usually composed of three tiers:

= The Web browser (example: Windows Internet Explorer)
= The Web content engine (example: ASP.NET)

= The database (example: Microsoft SQL Server)

Why a Web application rather than a traditional application?
= Easy to update and maintain

= Cross-platform compatibility
Examples: Web mail, online sales

08-361 Software Development Fundamentals

Web service

A Web service provides the ability to exchange
messages in a loosely coupled environment using
standard protocols such as Hypertext Transfer Protocol
(HTTP) and Extensible Markup Language (XML). F

A Web service enables the exchange of data and the
remote invocation of application logic using XML
messaging to move data through firewalls and between
heterogeneous systems.

The only assumption made between the client and the
server Is that recipients will understand the messages
that they receive.

08-361 Software Development Fundamentals

Windows Form Application

- A Windows Form application is a graphical
application in which information is displayed and
controls are provided to interact with data.

- Why use a Windows Form?

= The interface corresponds to the operating system,
so the application Is integrated with the desktop.

= Consistent user interface.

= Higher processing demand.

= Security and reliability i1s important. 2
Does not require an Internet connection. r

08-361 Software Development Fundamentals

Console Application

- A Console application Is a computer program
designed to be used through a text-only computer
Interface.

- Why use a Console application?

= A mouse or pointing device is not required.
= Speed of deployment.
= Ease of use.

P

AR

08-361 Software Development Fundamentals

Database Application

- A database application obtains and manipulates data
from a database managed by a database management
system (DBMS).

- Typical database applications include programs for
data input, data viewing, and batch processing of data.

- Why use a database application?
= Large amount of data to be stored and retrieved
= Client/server interaction

08-361 Software Development Fundamentals

No Student Lab 3.2

98-361 Software Development Fundamentals

Understanding Algorithms
and Data Structures

Microsoft

SUN o.9

08-361 Software Development Fundamentals

Lesson Overview
Students will understand algorithms and data structures

In this lesson, you will learn about:

« Arrays

- Stacks

« Queues

« Linked lists

= Sorting algorithms
- Performance implications of various data structures
Choosing the right data structure

B e S
o U IN 3 3

08-361 Software Development Fundamentals

Review Terms

= array — a list of data values, all of the same type, any element of
which can be referenced by an expression consisting of the array
name followed by an indexing expression.

- data structure — an organizational scheme, such as a record or
array, that can be applied to data to facilitate interpreting the data
or performing operations on it.

= linked list — a list of nodes or elements of a data structure
connected by pointers.

1P

kL

o U IN . 3

08-361 Software Development Fundamentals

Review Terms

= queue —a multi-element data structure from which (by strict
definition) elements can be removed only in the same order in
which they were inserted; that is, it follows a first-in-first-out
(FIFQO) constraint.

- sort algorithm — an algorithm that puts a collection of data
elements into some sequenced order, sometimes based on one or
more key values in each element.

- stack — represents a variable size last-in-first-out (LIFO)
collection of instances of the same arbitrary type.

| Ko,
™

08-361 Software Development Fundamentals

What Is a data structure?

- Classes used to organize data and provide various
operations upon that data

- The type of data structure used for an algorithm can
determine its performance

- Choice of data structure iIs dependent on the context

= A stack is best when you want the elements to
be accessed in a last-in-first-out order

= A linked list is best when there will be a number
of insertions into the data structure

\\\\\\\\

08-361 Software Development Fundamentals

Arrays

= Arrays are one of the simplest and most widely used data
structures in computer programs

« Arrays in any programming language all share a few common
properties:

» The contents of an array are usually stored in contiguous
memory

= All of the elements of an array must be of the same type or
of a derived type; hence arrays are referred to as
homogeneous data structures

= Array elements can be directly accessed. If you know you
want to access the ith element of an array, you can simply
use one line of code: arrayName [1i]

08-361 Software Development Fundamentals

Arrays

- Ifaspecified array index is out of bounds, an
IndexOutOfRangeException IS thrown

= To change the number of elements an array holds,
create a new array instance of the specified size, and
then copy the contents of the old array into the new,
resized array

- Searching an unsorted array Is acceptable when
working with small arrays, or when performing very
few searches

- If an application stores large arrays that are frequently
searched, there are other data structures better suited
for the job than arrays

08-361 Software Development Fundamentals

Example: Array code

public static void Main ()

dim nums () as Integer = new nums (3)
num (0) = 23
num(l) = 45
num) 2) .= ik

144

Console.WritelLine (“Index O: & nums[0])
Console.Writeline (“"Size: ” + nums.Length) for
(int 1 = 0, 1 < nums.length; 1i++)

Console.WritelLine (nums[1]) ;

1P

kL

08-361 Software Development Fundamentals

Stacks
= Last-In-First-Out (LIFO) data structure
= Does not allow random access to elements

- Can be visualized graphically as a vertical collection
of items

= When an item Is pushed onto the stack, it is placed
on top of all other items.

= Popping an item removes the item from the top of
the stack

- Useful when you need access to the item most
recently added

08-361 Software Development Fundamentals

Stacks

= The following animation demonstrates items 1, 2, and
3 being pushed onto the stack in that order, and then a
single pop.

Pushing
onto the
stack

08-361 Software Development Fundamentals

Example: Stack code
Push (), Pop (), and Count

public static void Main ()

Stack myStack = new Stack()

myStack.Push (“1")

myStack.Push(“ ")

myStack.Push (“3")

Console.WriteLlne(“Last in: “+myStack.Pop())
Console.WritelLine (“Elements left:

LHmyS HelcIkeRC@iliniE")

o o U IN 3 3

08-361 Software Development Fundamentals

Queues
= First-In-First-Out (FIFO) data structure
= Does not allow random access to elements

- Ideal for situations where you are only interested in
processing items in the same order in which they were
received

« Enqueue () and Dequeue () are used to input
and access elements in the data structure

08-361 Software Development Fundamentals

Queue

= The following animation demonstrates adding items 1,
2, and 3 into the queue (enqueue) and removing an
item (dequeue)

Enqueue
into the 1 2 3
queue

Dequeue rrij'
from the 1 2 3
queue

fffff o])

08-361 Software Development Fundamentals

Example: Queue code
Enqueue (), Dequeue (), and Count

public static void Main ()

Queue myQ = new Queue ()
myQ.Enqueue (“1")
myQ.Enqueue (“2")
myQ .Enqueue (“3")

Console.WritelLine (“First 1in: ”“+myQ.Dequeue ())
Console.WritelLine (“Elements left: “+myQ.Count)

P

AR

08-361 Software Development Fundamentals

Linked Lists

A list of nodes or elements of a data structure
connected by pointers

= Asingly linked list has one pointer in each node
pointing to the next node In the list

= A doubly linked list has two pointers in each node
that point to the next and previous nodes

= |nacircular list, the first and last nodes of the list
are linked

Does not allow random access to elements

08-361 Software Development Fundamentals

Linked Lists

= Allow more efficient insertion and removal of
elements in the middle of the sequence

= Because only links are changed, an insertion or
removal only affects the neighbors of the inserted
or removed element, and does not affect the entire
structure

- Insertion and removal Is independent of the number of
elements in the list, assuming the spot of insertion or
deletion is located

= Searching for an element has a linear relationship to
the number of elements

08-361 Software Development Fundamentals

Example: Linked List code

public static void Main ()

LinkedList<String> myList = new LinkedList
<String> ()

myList.AddFirst (Yone")

myList.AddLast (“two")

Console.WritelLine (“"First spot:
"+myList.RemoveFirst())

OoUN Oo5.0

08-361 Software Development Fundamentals

Sorting Algorithms

- Steps that put a collection of data elements into some
sequenced order, sometimes based on one or more key
values in each element

= Bubble sort
= Selection sort
= |nsertion sort

R

08-361 Software Development Fundamentals

Bubble Sort

« Compares each item in the list with the item next to It,
and swapping them if needed

= In one pass, the largest number will eventually end up
In the last spot (if the list is being sorted smallest to
largest)

- Repeats this process N-1 times, where N is the number
of items to sort

08-361 Software Development Fundamentals

Bubble Sort:

08-361 Software Development Fundamentals

Selection Sort

= Finds the smallest number in the list and swapping it
with the number in the index it belongs In

= Ineach pass, the part of the array that gets scanned for
the smallest number decreases

- Repeats this process N-1 times, where N is the number
of items to sort

08-361 Software Development Fundamentals

Selection Sort:

P

AR

08-361 Software Development Fundamentals

Insertion Sort

= The first element in an array is sorted with respect to
itself. The array can be said to be composed of a
sorted side and an unsorted side

- Elements from the unsorted side are inserted in the
correct order into the sorted side one at a time

- To create the insertion spot, elements are moved down
to make room

= Repeats this process N-1 times, where N is the number
of items to sort

08-361 Software Development Fundamentals

Insertion Sort:

> NN
N 2 =0
L

e A 14

08-361 Software Development Fundamentals

Student Lab 3.3

http://www.quia.com/quiz/4202330.html

