
4.1 Understand Web Page Development

4.2 Understand Microsoft ASP.NET Web Application Development

4.3 Understand Web Hosting

4.4 Understand Web Services

MTA Software Fundamentals 4 Test

98-361 Software Development Fundamentals

L E S S O N 4

Understand Web Page
Development

98-361 Software Development Fundamentals

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Lesson Overview

Students will understand Web page development.

In this lesson, you will learn about:

 HTML

 CSS

 JavaScript

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Review Terms

 Cascading Style Sheets (CSS) —a Hypertext Markup Language
(HTML) specification ,developed by the World Wide Web
Consortium (W3C), that allows authors of HTML documents and
users to attach style sheets to HTML documents.

 HTML—acronym for Hypertext Markup Language, the markup
language used for documents on the World Wide Web. A tag-
based notation language used to format documents that can then
be interpreted and rendered by an Internet browser.

 JavaScript—a scripting language developed by Netscape
Communications and Sun Microsystems that is loosely related to
Java. JavaScript, however, is not a true object-oriented language,
and it is limited in performance compared with Java because it is
not compiled.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

What is HTML?

 The language that Web servers and browsers use to
define the elements of a Web page.

 HTML uses tags to mark elements in a document,
such as text and graphics, to indicate how Web
browsers should display these elements to the user and
should respond to user actions such as activation of a
link by means of a key press or mouse click.

 Examples of tags:

 <html>

 <body>

L E S S O N 4 . 1

98-361 Software Development Fundamentals

What is HTML? (continued)

 Used primarily to format data on a page.

 Doesn’t contain any advanced support for doing
complex operations; it just serves to lay out the
contents in a readable way on the Web page.

 When the browser receives an HTML document, it
converts the HTML description to a screen display.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

What is HTML? (continued)

 A text-based language that you can view and edit in a
standard text editor like Notepad.

 Consists of the text on the Web page, along with
“markup tags” that indicate to the browser how that
text should be displayed.

 Specifies items such as the font to use for sections of
text, where to display embedded images, and of
course, hyperlinks that enable you to link to other
Web pages.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

HTML Example Code

 HTML code consists of a series of tags denoted by angle brackets
around a tag name, such as the <html> tag in the example
below.

 At the end of the document is another tag, </html>. The
forward slash indicates that this is the end tag that corresponds to
the <html> tag at the start of the document. Everything
between the two tags is called the <html> element.

displays

<html>

<body>

Content

here

</body>

</html>

Content

here

L E S S O N 4 . 1

98-361 Software Development Fundamentals

What is a cascading style sheet (CSS)?

 A language/code that completely separates the text
displayed on a Web page (which is created in HTML
code) and information that describes how to display
that text.

 Includes typographical information on how the page
should appear, such as the font of the text in the page.

 Directs the manner in which the style sheets for an
HTML document and the user’s style will blend.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Why use CSS?

 Improves content accessibility by allowing the same
content to be displayed in different styles depending
on the rendering method: on screen, by voice, or using
Braille-based devices.

 Allows more flexibility and control over the way the
content is presented.

 Provides a more efficient way for multiple pages to
share the same formatting.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

CSS Example Code

 The first section of the style sheet code here defines
that all content within the HTML body element will
use the Verdana font with a point size of 9 and will
align it to the right.

body

{

font-family: Verdana;

font-size: 9pt;

text-align: right;

}

div

{

font-family: Georgia;

}

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Client-side vs. Server-side
 A Uniform Resource Locator (URL) is entered, or a link is clicked, and the

browser requests that particular page from the server (1)

 The server finds the page, opens it, and runs server-side scripts within it (2).

 After all the server-side scripts are processed, the results are sent back to the
browser (3).

 The result is a page created from the HTML and CSS code, and optionally,
client-side scripting code. If there is client-side scripting code on the page (for
example, JavaScript), the browser will process it and display it to the user (4).

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Server-side Scripting

 ASP.NET, ASP, or PHP.

 Used for generating Web pages by request.

 All data on the pages will be current because it was
created moments before being sent back to the
browser.

 Examples: online shops, auction sites, online forums,
and bulletin boards.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Client-side Scripting

 Used to make pages interactive after they are sent to the browser.

 A common usage is to check the data that the user has entered in
a form on the page.

 If the user forgets to enter his or her full name or misspells
the e-mail address, the client-side script will warn the user.

 More responsive and faster for the user, unlike server-side
scripts, which depend on the server and Internet traffic between
the user’s computer and the server.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

What is JavaScript?

 Client-side scripting language used on millions of
Web pages

 Adds interactivity to the browser and Web pages

 Complements very popular server-side programming
languages and platforms, like ASP.NET

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Why use JavaScript?

 Allows for dynamic content (while HTML is static).

 Adds functionality, interactivity, and dynamic effects.

 For example, JavaScript allows you to show the
current date on the Web page without having to edit
the code and upload it to the server every night.

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Example: JavaScript Code

<html>

<head>

<title>My page</title>

<script type="text/javascript" language="javascript">

<!–

function say(text)

{

alert(text);

}

say("The page is loading!");

//-->

</script>

</head>

<body>

</body>

</html>

L E S S O N 4 . 1

98-361 Software Development Fundamentals

No Student Lab 4.1

L E S S O N 4 . 1

98-361 Software Development Fundamentals

Understand Microsoft
ASP.NET Web
Application Development

98-361 Software Development Fundamentals

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Lesson Overview

Students will understand ASP.NET Web application development.

In this lesson, you will learn about:

 The page life cycle

 The event model

 State management

 Client-side vs. server-side programming

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Review Terms

 client-side program—a program that is run on a client
rather than on a server.

 event model—allows the developer to program Web
pages using an event-based model that is similar to the
event model used in client applications.

 page life cycle—when an ASP.NET page runs, the
page performs a series of processing steps. These
steps include initialization, instantiating controls,
restoring and maintaining state, running event handler
code, and rendering.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Review Terms (continued)

 server-side program—a program that is run on a server
rather than on a client.

 state management—the process by which you maintain
state and page information over multiple requests for
the same page or different pages.

 Web application—software on a set of clients and
servers that cooperates to provide the solution to a
problem.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Page Life Cycle

 The ASP.NET page life cycle refers to the series of
steps that a page goes through from creation to
disposal.

 Important to understand the page life cycle so that
code can be written at the appropriate life cycle stage
for the intended effect.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Page Life Cycle Stages

 Page request—happens before the page life cycle
begins.

 Once a page is requested, ASP.NET determines
whether the page needs to be parsed and compiled
(therefore beginning the life of a page), or whether
a cached version of the page can be sent

 Start—page properties such as Request and Response
are set. At this stage, the page also determines whether
the request is a postback or a new request, and sets the
IsPostBack property accordingly.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Page Life Cycle Stages (continued)

 Initialization—controls on the page are available and
each control's UniqueID property is set. Any themes
are also applied to the page.

 If the current request is a postback, the postback
data has not yet been loaded and control property
values have not been restored to the values from
view state.

 Load—if the current request is a postback, control
properties are loaded with information recovered from
view state and control state.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Page Life Cycle Stages (continued)

 Validation—the Validate method of all validator controls is
called, which sets the IsValid property of individual
validator controls and of the page.

 Postback event handling—if the request is a postback, any
event handlers are called.

 Rendering

 Before rendering, page and control view states are saved.

 During rendering, the page calls the Render method for
each control, providing a text writer that writes its output
to the OutputStream of the page's Response property.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Page Life Cycle Stages (continued)

 Unload—called after the page has been fully rendered,
has been sent to the client, and is ready to be
discarded. Page properties such as Response and
Request are unloaded, and any cleanup is performed.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Event Model

 The event-based model in ASP.NET is similar to that
in client applications.

 Example: add a button to an ASP.NET Web page
and write an event handler for the button’s click
event.

 In ASP.NET Web pages, events associated with server
controls originate on the client but are handled on the
server.

 It is different from client-based applications, where
the events are raised and handled on the client.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Event Model Steps

1. The event information is captured on the client and an
event message is transmitted to the server through a
Hypertext Transfer Protocol (HTTP) post.

2. The page interprets the post to determine what event
occurred and calls the appropriate method in the code
on the server to handle the event.

 ASP.NET handles the task of capturing, transmitting,
and interpreting the event.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

State Management

 A new instance of the Webpage class is created each time
the page is posted to the server.

 In traditional Web programming, all information associated
with the page and the controls on the page would be lost
with each round trip to and from the server.

 Example: If a user enters information into a text box,
that information would be lost in the round trip from
the browser to the server.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

State Management (continued)

 In ASP.NET, state management refers to the several
client-side and server-side options that are available to
help you preserve data on both a per-page and an
application-wide basis.

 Client-side examples:

 View state, control state, hidden fields, cookies

 Server-side examples:

 Application state, session state, profile properties,
database support

L E S S O N 4 . 2

98-361 Software Development Fundamentals

State Management: View State

 Use when storing small amounts of information for a page
that will post back to itself.

 The ViewState property provides a structure for retaining
values between multiple requests for the same page.

 When the page is processed, the current state of the page
and controls is hashed into a string and saved in the page
as a hidden field.

 When the page is posted back to the server, the page
parses the view-state string at page initialization and
restores property information in the page.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

State Management: Control State

 Use when storing small amounts of state information
for a control between round trips to the server.

 You need to store control-state data for a control to
work properly.

 The ControlState property allows you to persist
property information that is specific to a control, and it
cannot be turned off like the ViewState property can.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

State Management: Application State

 Use when storing infrequently changed, global
information that is used by many users and security is
not an issue. Do not store large quantities of
information in application state.

 ASP.NET provides application state via the
HttpApplicationState class as a method of storing
global application-specific information that is visible
to the entire application.

 Store application-specific values in application state,
which is then managed by the server.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

State Management: Session State

 Use when storing short-lived information that is
specific to an individual session and security is an
issue.

 ASP.NET provides a session state, which is available
as the HttpSessionState class, as a method of storing
session-specific information that is visible only within
the session.

 Store session-specific values and objects in session
state, which is then managed by the server and
available to the browser or client device.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Client-side vs. Server-side
 A Uniform Resource Locator (URL) is entered, or a link is clicked, and the

browser requests that particular page from the server (1).

 The server finds the page, opens it, and runs all server-side scripts within it (2).

 After all the server-side scripts are processed, the results are sent back to the
browser (3).

 The result is a page that has Hypertext Markup Language (HTML) and cascading
style sheets (CSS) code, and optionally, client-side scripting code. If there is
client-side scripting code on the page (for example, JavaScript), the browser will
process it and display it to the user (4)

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Server-side Scripting

 Server-side scripting (like ASP.NET, ASP, or PHP) is
used for generating Web pages by request.

 All data on such pages will be current, as they are
created moments before being sent back to the
browser.

 Examples: online shops, auction sites, online forums
and bulletin boards.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Client-side Scripting

 Used to make pages interactive after they are sent to the browser.

 A common use of client-side scripting is to check the data that
the user has entered in a form on the page.

 If the user forgot to enter his or her full name or misspelled
the e-mail address, the client-side script will warn the user.

 Client-side scripts are also much more responsive and faster for
the user, unlike the server-side scripts, which depend on the
server and Internet traffic between the user’s computer and the
server, as the request has to be sent to the server and then back
again.

L E S S O N 4 . 2

98-361 Software Development Fundamentals

No Student Lab 4.2

L E S S O N 4 . 2

98-361 Software Development Fundamentals

Understand Web Hosting

98-361 Software Development Fundamentals

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Lesson Overview

Students will understand Web hosting.

In this lesson, you will learn about:

 Creating virtual directories for Web sites

 Deploying Web applications

 The role of Internet Information Services (IIS)

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Web Hosting

 The process involved with making a website accessible via
the World Wide Web.

 While you can host a site on your own server, it is better to
use an Internet service provider (ISP).

 An ISP will host your website and will usually provide:

 Space on a server

 Maintenance and support

 E-mail capabilities

 Security and stability

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Review Terms

 HTTP—acronym for Hypertext Transfer Protocol, the protocol
used to carry requests from a browser to a Web server and to
transport pages from Web servers back to the requesting browser.

 ISP—acronym for Internet service provider, a business that
supplies Internet connectivity services to individuals, businesses,
and other organizations.

 World Wide Web—the total set of interlinked hypertext

documents residing on HTTP servers all around the world.

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Virtual Directory

 A directory name (path) that maps to a physical directory
on a local or remote server

 Creates a path to the physical directory that does not
necessarily have to use the actual directory path name

 Allow multiple websites and Uniform Resource Locators
(URLs) to map to the same content without having to
change the path structure of the content directory in each
application

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Deploying a Web Application

 Deployment makes a Web application available to
other users through the Internet.

 Requires deployment of the application from the
development server to the production server.

 On the production server, the application will have
access to live databases (if needed).

 When deployed, the final version of the website is
copied to a private folder on the production Web
server.

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Internet Information Services (IIS)

 Windows-based Web service that delivers content,
like Web pages, using HTTP over the World Wide
Web

 Delivers Hypertext Markup Language (HTML)
documents to clients, primarily Web browsers

 Supports server-side scripting, such as ASP.NET

 Is installed on the server and is the backbone of the
Microsoft Windows Server operating system

L E S S O N 4 . 3

98-361 Software Development Fundamentals

No Student Lab 4.3

L E S S O N 4 . 3

98-361 Software Development Fundamentals

Understand Web Services

98-361 Software Development Fundamentals

L E S S O N 4 . 4

98-361 Software Development Fundamentals

Lesson Overview

Students will understand Web services.

In this lesson, you will learn about:

 Web services consumed by client applications

 Accessing Web services from a client application

 SOAP and WSDL

98-361 Software Development Fundamentals

Guiding Questions

1. How are Web services accessed and consumed by client
applications?

2. What is SOAP?

3. What is WSDL?

98-361 Software Development Fundamentals

Activator

1. How would you communicate with someone who did
not speak your language?

2. How is this similar to how applications interact with
Web services?

98-361 Software Development Fundamentals

Review Terms

 SOAP—acronym for Simple Object Access Protocol,
a simple, XML-based protocol for exchanging
structured and type information on the Web

 WSDL—acronym for Web Services Description
Language, an Extensible Markup Language (XML)
format that allows for better interoperability among
Web services and development tools

98-361 Software Development Fundamentals

Web Services

 Extend the World Wide Web infrastructure to provide a means for
software to connect to other applications

 Allow applications to access Web services via Web protocols and data
formats such as Hypertext Transfer Protocol (HTTP), XML, and SOAP

 No need to worry about how each Web service is implemented

 Combine the best aspects of component-based development and the
Web

 A cornerstone of the Microsoft .NET Framework programming model

98-361 Software Development Fundamentals

What is a Web service?

• Used when a program wants to interact with another
program through the Internet.

• A program is required to process the communication.

• The program might change its implementation from one
language to another, but the functionality of the Web
service stays the same.

• The Web service is the abstract functionality.

 The software and hardware is the concrete
implementation.

98-361 Software Development Fundamentals

What do Web services do?

 Provide reusable operations for other applications

 Can serve as a component of another application

 Examples: weather reports, currency conversion

 Provide interoperability between different platforms by
giving applications a way to communicate

98-361 Software Development Fundamentals

How does a Web service work?

1. A company (the requester) wants to use the Web
service of another company (the provider) .

2. Before they can pass information to each other, the
requester and provider must agree on both the
meaning and method of the information exchange.

3. The method of exchange is documented in an interface
described in a machine-processable format such as
WSDL.

4. Outside systems interact with the Web service in a
manner prescribed by WSDL using SOAP.

98-361 Software Development Fundamentals

WSDL

 It is written in XML and is used to locate a Web
service and describe its functions.

 It defines the information formats, data types,
transport protocols, and transport serialization
formats.

Element Meaning

<types> The data types used by the Web service

<message> The messages used by the Web service

<portType> The operations performed by the Web service

<binding> The communication protocols used by the Web service

98-361 Software Development Fundamentals

SOAP

 A generalized XML messaging framework for
exchanging structures and type information on the
Web (over HTTP).

 It contains no application or transport semantics,
which makes it highly modular and extensible.

 To access a Web service, you use SOAP.

98-361 Software Development Fundamentals

SOAP (continued)

 A SOAP message is an XML document containing the
elements in the table.

Element Meaning

<soap:Envelope> Identifies the XML document as a SOAP message

<soap:Header> Header information

<soap:Body> Call and response information

<soap:Fault> Errors and status information

98-361 Software Development Fundamentals

Lesson Review

A company wants to provide a Web service that allows outside
applications to access sports statistics. Draw a diagram
showing the interaction of WSDL and SOAP in the context
of this Web service. Include labels for the requester and the
provider, and use arrows to illustrate the flow of
information.

98-361 Software Development Fundamentals

Web Service

Provider

WSDL

Requester

Requester refers to WSDL

SOAP

98-361 Software Development Fundamentals

Complete the QUIA Test

MTA Software Fundamentals 4 Test

98-361 Software Development Fundamentals

L E S S O N 4

http://www.quia.com/quiz/4202488.html

