
5.1 Understand Windows Forms Applications and Console-based 

Applications

5.2 Understand Windows Services

MTA Software Fundamentals 5 Test

98-361 Software Development Fundamentals

L E S S O N 5



Understand Windows 
Forms Applications and 
Console-based 
Applications

98-361 Software Development Fundamentals

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Lesson Overview

Students will understand Windows Forms applications and console-based 
applications.

In this lesson, you will learn about:

 The Windows Forms event model

 Visual inheritance

 The use of Multiple Document Interface (MDI) and Single Document 
Interface (SDI) applications

 Characteristics and capabilities of console-based applications

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Review Terms

 Event–an action or occurrence, often generated by the 
user, to which a program might respond. Examples: 
key presses, button clicks, and mouse movements.

 User Interface–the portion of a program with which a 
user interacts. 

 Types of user interfaces (UIs) include command-line 
interfaces, menu-driven interfaces, and graphical user 
interfaces.

 Windows Forms–a rich Windows client library for 
building Windows client applications.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Windows Forms Applications

 Programs that run on a user’s Windows-based 
computer.

 Contain controls to create a UI and code to manipulate 
data.

 Coded in the Microsoft Visual Studio Integrated 
Development Environment (IDE).

 Windows Forms refers to the set of managed libraries 
used to simplify common application tasks.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Windows Forms Applications (continued)

 Can display information, request input from users, and 
communicate with computers over a network.

 A form is a visual surface on which you display 
information to the user.

 Controls are added and responses to user actions, such 
as mouse clicks or key presses, are coded.

 A control is a UI element that displays data or accepts 
data input.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Why use a Windows Form?

 The interface corresponds to the operating system, so 
the application is integrated with the desktop.

 The UI is consistent.

 It has a higher processing demand than a Web 
application.

 Security and reliability is important.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Windows Forms Event Model

 When a user does something to your form or one of its 
controls, the action generates an event.

 An event is an action that you can respond to in code.

 The application uses code to react to the event and 
process the event when it occurs.

 The event handler is a procedure in the code that 
determines what actions are performed when an event 
occurs.

 When the event is raised, the event handler(s) that 
receive the event are executed.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Visual Inheritance

 Why use visual inheritance?

 A project requires a form similar to one used in a 
previous project.

 A basic form or control layout will be used as a 
template and will be modified for different 
situations later on.

 Form inheritance enables you to create a base form 
and then inherit from it and make modifications, while 
preserving whatever original settings you need.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Visual Inheritance: Examples

//Visual Basic

Public Class Form2

Inherits Namespace1.Form1

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Single Document Interface (SDI)

 Each document frame window is separate from others.

 Each window contains its own menu and toolbar and 
does not have a background or parent window.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Multiple Document Interface (MDI)

 Multiple document frame windows may be open in the 
same instance of an application.

 An MDI application has a window within which 
multiple MDI child windows, which are frame 
windows themselves, can be opened, each containing 
a separate document.

A version of Microsoft Excel 

using an MDI

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Choosing between SDI and MDI

 Why use SDI?

 When it is unlikely that more than one window is needed.

 Example: When using a calendar application, it is unlikely that 
you would need more than one calendar open at a time.

 Why use MDI?

 When more than one window is needed.

 Example: When processing insurance claims, an employee 
often needs to work on more than one claim at a time and has 
to compare claims side by side.

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Console-based Applications

 A program that uses a text-only interface and usually 
requires only a keyboard for input.

 They typically run in a command window, such as the 
Win32 console.

 Images and video cannot be displayed.

 Useful on older computers that may be slow to render 
image content.

 Why use a console 

application?

 Speed of deployment

 Ease of use

L E S S O N 5 . 1



98-361 Software Development Fundamentals

No Student Lab 5.1

L E S S O N 5 . 1



98-361 Software Development Fundamentals

Understand Windows 
Services

98-361 Software Development Fundamentals

L E S S O N 5 . 2



98-361 Software Development Fundamentals

Lesson Overview

Students will understand Windows Services.

In this lesson, you will learn about:

 Characteristics and capabilities of Windows Services

L E S S O N 5 . 2



98-361 Software Development Fundamentals

Review Terms 

 Service—a program or routine that provides support to other 
programs

L E S S O N 5 . 2



98-361 Software Development Fundamentals

Windows Service

 An executable that carries out specific functions and is 
designed not to require user involvement.

 It often is configured to start alongside the operating 
system and run in the background.

 Why use a Windows service?

 When you want a program to start automatically when the 
operating system starts

 When your program does not require user interaction, and 
therefore may not need a user interface (UI)

 When you need long-running functionality 

L E S S O N 5 . 2



98-361 Software Development Fundamentals

How are Windows Services different?

 The compiled executable file that a service application 
project creates must be installed on the system before 
the project can function.

 You must create installation components for service 
applications.

 The installation components install and register the 
service on the computer and create an entry for 
your service with the Windows Services Control 
Manager.

 Windows Service applications run in their own 
security context and are started before the user logs 
into the Windows computer on which he or she is 
installed.

L E S S O N 5 . 2



98-361 Software Development Fundamentals

Windows Service Lifetime

 The service is installed on the system and loaded into 
the Windows Services Control Manager.

 The service is started.

 At this point, the service can be:

 Running

 Paused

 Stopped

 You can pause, stop, or resume a service

 By using the Windows Services Control Manager

 By using Server Explorer

 By calling methods in code

L E S S O N 5 . 2



98-361 Software Development Fundamentals

No Student Lab 5.2

L E S S O N 5 . 2



98-361 Software Development Fundamentals

Complete the QUIA Test

MTA Software Fundamentals 5 Test

98-361 Software Development Fundamentals

L E S S O N 5

http://www.quia.com/quiz/4202580.html

