
6.1 Understand Relational Database Management Systems

6.2 Understand Database Query Methods

6.3 Understand Database Connection Methods

MTA Software Fundamentals 6 Test

98-361 Software Development Fundamentals

L E S S O N 6

Understand
Relational Database
Management Systems

98-361 Software Development Fundamentals

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Lesson Overview

In this lesson, you will learn about:

 The characteristics and capabilities of database products

 Database design

 Entity Relationship Diagrams (ERDs)

 Normalization concepts

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Characteristics and Capabilities of a Relational
Database

 Captures and stores data efficiently

 Reduces data redundancy

 Decreases application processing time by storing data more
efficiently

 Provides functions to retrieve, process, and report data

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Entity Relationship Diagrams (ERDs)

 An entity relationship diagram (ERD) is a graphical representation
of the entities, or groups of information, and their relationships.

 There are three types of relationships between entities:

 One-to-one: one instance of an entity (A) is associated with one other
instance of another entity (B). This is an association between two tables
in which the primary key value of each record in the primary table
corresponds to the value in the matching field or fields of one, and only
one, record in the related table.

• For example, in a database of employees, each employee name (A) is
associated with only one Social Security number (B).

Mary 123-55-1234

Employees Social Security Numbers

one-to-one

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Entity Relationship Diagrams (continued)

 One-to-many: one instance of an entity (A) is associated with zero, one,
or many instances of another entity (B), but for one instance of entity B,
there is only one instance of entity A.

• For example, for a company with all employees working in one building, the
building name (A) is associated with many different employees (B), but those
employees all share the same singular association with entity A.

Mary,

Joe,

Sam,

etc

ABC Company

Building Headquarters

EmployeesBuilding

one-to-many

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Entity Relationship Diagrams (continued)

 Many-to-many: one instance of an entity (A) is associated with one, zero,
or many instances of another entity (B), and one instance of entity B is
associated with one, zero, or many instances of entity A. This is a
complex association between two sets of parameters in which many
parameters of each set can relate to many others in the second set.

• For example, for a company in which all its employees work on multiple
projects, each instance of an employee (A) is associated with many instances of
a project (B), and at the same time, each instance of a project (B) has multiple
employees (A) associated with it.

Mary,

Joe,

Sam,

Etc.

Project A,

Project B,

Project C,

etc.

EmployeesProjects

many-to-many

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Normalization Concepts

 Used to eliminate redundant data and ensure data dependencies make
sense

 The Normal Forms:

 — The First Normal Form (1NF) eliminates duplicate columns from the same table,
creates separate tables for each group of related data, and identifies each row with a
unique column or set of columns (the primary key).

 — The Second Normal Form (2NF) addresses the concepts of removing duplicate
data and subsets of data that apply to multiple rows of a table, and placing them in
separate tables. It creates relationships between these new tables and their
predecessors through the use of foreign keys.

 — The Third Normal Form (3NF) goes one step further, meeting all requirements for
the 2NF and then also removing columns that are not dependent upon the primary
key.

 — The Fourth and Fifth Normal Forms are rarely used.

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Keys

— A primary key defines one or more columns that uniquely
identify each row in the table.

— Relationships (or links) between tables are stored as foreign
key constraints. A foreign key from one table refers to a primary
key in another table; that is, the foreign key, ZIP code, in a
demographic table is the primary key in the ZIP code table.

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Student Lab 6.1

L E S S O N 6 . 1

98-361 Software Development Fundamentals

Understand
Database Query Methods

98-361 Software Development Fundamentals

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Lesson Overview

In this lesson, you will learn about:

 Structured Query Language (SQL)

 Creating and accessing stored procedures

 Selecting data

 Updating data

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Structured Query Language (SQL)

 What is a query?

— A specific set of instructions for extracting
particular data.

— A query is a question to the tables in a database.
The syntax of the question depends on the database
language.

 SQL commands can be used interactively as a query
language or they can be embedded in application
programs.

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Creating and Accessing Stored Procedures

 A stored procedure is a saved collection of SQL statements or a
reference to a Microsoft .NET Framework common language
runtime (CLR) method that can take and return user-supplied
parameters.

 Procedures can be created for permanent use or for temporary use
within a session (called a local temporary procedure), or for
temporary use within all sessions (called a global temporary
procedure).

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Selecting Data

 Data can be selected from a single table or multiple
tables.

 To access data from a single table, the common
command is:

•SELECT column(s) FROM table

(Note: This SELECT statement does not eliminate duplicates
automatically. To eliminate duplicates, you must use the
keyword DISTINCT.)

• To add qualifiers to the selection statement, we can add the
WHERE clause.

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Examples of Selecting Data

Precondition: the following database tables are already created and contain
data: STUDENT, ENROLLMENT, and CLASS.

The following statement selects all the majors for every student:

SELECT major FROM STUDENT

Note: This would include duplicates.

The second example selects data from two tables using a subquery to
retrieve the name of all students enrolled in Bio 123):

SELECT name FROM STUDENT WHERE

STUDENTID in (SELECT studentNumber FROM ENROLLMENT

WHERE className = “BIO123”)

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Updating Data

 Updating data includes inserting rows, deleting rows, and modifying existing
rows.

To insert data:

INSERT INTO table VALUES(value1, value2, value3)

or to achieve a partial data insert:

INSERT INTO table VALUES(value2, value3)

To delete data:

 DELETE table WHERE table.column = value

 Note: Beware of potential referential integrity problems; that is, deleting
rows that other items refer to.

To modify data:

 UPDATE table SET column= value WHERE column = value

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Examples of Updating Data

(Note: The same tables are used as earlier in this presentation.)

INSERT INTO ENROLLMENT

VALUES(400, “BIO123”,44)

DELETE STUDENT WHERE

STUDENT.STUDENTID=100

UPDATE ENROLLMENT

SET positionNumber = 44

WHERE STUDENTID = 400

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Student Lab 6.2

L E S S O N 6 . 2

98-361 Software Development Fundamentals

Understand
Database Connection
Methods

98-361 Software Development Fundamentals

L E S S O N 6 . 3

98-361 Software Development Fundamentals

Lesson Overview

In this lesson, you will learn about:

 Connecting to various types of data stores such as:

 Flat files

 Extensible Markup Language (XML) files

 In-memory objects

 Resource optimization

L E S S O N 6 . 3

98-361 Software Development Fundamentals

General Information

 To bring data into your application (and send changes back to the
data source), some kind of two-way communication needs to be
established.

 This two-way communication is typically handled by a connection
object (for example, a SqlConnection) that is configured with a
connection string, the information that it needs to connect to the
data source.

 The next few slides will discuss specific file types and their uses.

L E S S O N 6 . 3

98-361 Software Development Fundamentals

Relational Databases

 Although there are different ways to organize data in a database, a
relational database is one of the most effective. In a relational database,
data is collected into tables.

 A table represents a class of objects that are important to an
organization. For example, a company may have a database with a table
for employees, another table for customers, and another for stores. Each
table is made of columns and rows.

 When organizing data into tables, you can usually find many different
ways to define tables. Relational database theory defines a process
called normalization, which ensures that the set of tables you define will
organize your data effectively.

L E S S O N 6 . 3

98-361 Software Development Fundamentals

How to connect to a flat file

 A flat file database describes any of various means to encode a database
model (most commonly a table) as a singular file (such as .txt or .ini).

 A flat file is a file that has no repeating groups. To access these files, you
must use an OLE DB to establish a connection between your application
and the flat file.

 OLE DB (Object Linking and Embedding, Database, sometimes written as
OLEDB or OLE-DB) is an application programming interface (API)
designed by Microsoft for accessing different types of data stored in a
uniform manner.

 OLE DB was designed to access both flat files and database files. It
provides an object-oriented interface to data of almost any type.

 OLE DB acts as an interface to access a relational database through Open
Database Connectivity (ODBC).

L E S S O N 6 . 3

98-361 Software Development Fundamentals

How to connect to an XML file using OLE DB

 XML (Extensible Markup Language) is the emerging Internet standard
for data. XML consists of a set of tags that can be used to define the
structure of a hypertext document. XML documents can be easily
processed by the Hypertext Markup Language (HTML), which is the
most important language for displaying Web pages.

 An XML file is typically used for Web design applications.

 There are two separate methods of retrieving XML data from a data
source: one uses CStreamRowset and the other uses CXMLAccessor.

L E S S O N 6 . 3

98-361 Software Development Fundamentals

Examples of connections

 ActiveX Data Objects (ADO) is a language-neutral object model that
expose data raised by an underlying OLE DB provider. The most
commonly used OLE DB provider is the OLE DB provider for ODBC
drivers, which exposes ODBC data sources to ADO.

 Examples:

 Set Cnn = Server.CreateObject("ADODB.Connection")

Cnn.open "PROVIDER=MICROSOFT.JET.OLEDB.4.0;DATA

SOURCE=c:\mydatabase.mdb"

 Set cnn = Server.CreateObject("ADODB.Connection")

cnn.open "PROVIDER=SQLOLEDB;DATA

SOURCE=sqlservername;UID=username;PWD=password;DAT

ABASE=mydatabase " %>

L E S S O N 6 . 3

98-361 Software Development Fundamentals

What is an in-memory object?

 If your application uses a disconnected data model, you need to store
the data in your application temporarily while you work with it; a
dataset (an in-memory cache of data) simplifies the process of working
with data until you reconnect with your data source.

 Prior to querying your data, you create a dataset to receive the results of
a query. The dataset is created with the same shape (schema) of the
returned data.

 You typically create new data tables with TableAdapters using the
TableAdaptorConfiguration Wizard or by dragging database objects
from Server Explorer onto the Dataset Designer.

 Data tables are created as a byproduct when you create new
TableAdapters in the Data Source Configuration Wizard, but they can
also be created independently. You can create a stand-alone data table
by dragging a DataTable object from the DataSet tab of the Toolbox
onto the Dataset Designer.

L E S S O N 6 . 3

98-361 Software Development Fundamentals

Resource Optimization

 The process of examining data and the data access requirements to
optimize the database setup.

 One aspect of resource optimization is the process of normalization,
which is discussed in Lesson 6.1.

 Sometimes relations are purposely left un-normalized to improve
performance.

L E S S O N 6 . 3

98-361 Software Development Fundamentals

98-361 Software Development Fundamentals

No Student Lab 6.3

L E S S O N 6 . 3

98-361 Software Development Fundamentals

Complete the QUIA Test

MTA Software Fundamentals 6 Test

98-361 Software Development Fundamentals

L E S S O N 6

http://www.quia.com/quiz/4202608.html

