

63 Web Development Fundament

98-363 Web Development Fundamentals

_esson Overview

In this lesson, you will learn:

= Techniques for tracing a Web application

« How custom error pages can be created

- The appropriate use of error pages

= Viewing error messages in a Web page

5
- P EESSIOINESET

98-363 Web Development Fundamentals

Tracing Web Applications

= ASP.NET tracing can be integrated with system-level tracing to
provide multiple levels of tracing output in distributed and multi-
tier applications.

- When you enable tracing for an application, you can display trace
output in any page in the application by setting the pageOutput
attribute of the trace element to True in the Web.config file.

= The Trace Viewer (Trace.axd) can be used to view trace
Information that is collected and cached by ASP.NET when tracing
IS enabled.

. .'.'I;, X S

s v
- AR T e

LESSON 3.1

98-363 Web Development Fundamentals

Example of enabling tracing in the Web.config file

<configuration>
<system.web>
<trace enabled="true" requestLimit="20" localOnly="false" />
</system.web>
</configuration>

Note: The example shows an application trace configuration that
collects trace information for up to 20 requests. It also enables
browsers on computers other than the server to display the Trace
Viewer.

) i
LESSON 3.1

98-363 Web Development Fundamentals

How is tracing useful?

ASP.NET tracing enables you to view diagnostic information about a
single request for an ASP.NET page.

ASP.NET tracing enables you to follow a page's execution path, display
diagnostic information at run time, and debug your application.

= I'!

RS e
' LESSON 3.1

-‘-
o g [l

RPA R

98-363 Web Development Fundamentals

Debugging

= [t is difficult, if not impossible, to catch every possible error in code
when you first develop a Web application.

- Errors can be either compile-time errors, logic errors, or run-time errors.

— The Microsoft Visual Studio 2008 compiler finds compile-time
errors.

= To find run-time errors and logic errors, use the Visual Studio 2008
debugger, the Trace object, or the Debug object.

i S

P g A X
D e IR

Pl iy .

o e =

‘.‘é.-.".‘g

LESSON 3.1

98-363 Web Development Fundamentals

Assignment
= Complete student activity 3.1

98-363 Web Development Fundamentals

Handle Web
Application Errors

Microsoft

Ry
i o
‘e AT
e

LESSON 5.2

98-363 Web Development Fundamentals

_esson Overview

In this lesson, you will learn about:
« Hypertext Transfer Protocol (HTTP) error trapping
« Common HTTP errors

LESSON35.2

4 - __:;'1- -

98-363 Web Development Fundamentals

HTTP Error Trapping

Error handling in Web applications occurs on four different levels, each
of which generally traps different types of errors.

1. Code-block level:

. Error handling is done within a page in try-catch-finally blocks.
. Both Java Server Pages (JSP) and Microsoft ASP.NET support this structure.

2. Page level:

. Errors that occur on a JSP or an ASP.NET page (for example, compilation errors)
are generally processed by specialized error pages.

. Redirection to error pages is accomplished through page directives.

3. Application level:

. These errors apply to entire Web applications and are generally handled and
controlled by settings within configuration files, such as deployment descriptors
in JSP applications or the Web.config file in ASP.NET.

- | LESSON 3.2

98-363 Web Development Fundamentals

HTTP Error Trapping (continued)

4. Server level:

. This applies to all applications running on a server and is generally configurable in
the settings for the particular server.

. Error handling of this nature is vendor-specific.

When errors occur, they move up the levels.

. For example, if an error can’t be handled at the code block level, it “bubbles up” to
the page level, and so on.

. It is important to catch the errors in one of these four levels or the error message
could contain insecure information.

- See http://msdn.microsoft.com/en-us/library/aa478986.aspx for language- 1,
specific error handling (such as try-catch). e

= I'!

:;":l i e
I LESSON 3.2
98-363 Web Development Fundamentals

Code Block Example Using Microsoft Visual
Basic.NET

Try
" Code that might throw an exception
Catch
" Jump to here when the exception is thrown

Finally
" This code will be executed after the try and catch
" code, regardless of whether an exception 1is
" thrown or there i1s a break or continue

End Try

5
3.2

© 98-363 Web Development Fundamentals

Example of Page-Level Error Handling in Visual Basic.NET

Private Sub Page Error(ByVal sender As Object, ByVal e As EventArgs)
" Get last error from the server
Dim exc As Exception = Server.GetLastError

" Handle exceptions generated by Button 1

IT TypeOf exc Is InvalidOperationException Then
" Pass the error on to the Generic Error page
Server.Transfer("'GenericErrorPage.aspx', True)

" Handle exceptions generated by Button 2
Elself TypeOf exc Is ArgumentOutOfRangeException Then
" Give the user some information, but stay on the default page
Response _Write(''<h2>Default Page Error</h2>" & vbLT)
Response _Write(("'<p>Provide as much information here as is
& "appropriate to show to the client.</p>" & VvbL¥T))
Response _Write(("'Return to the " _
& "Default Page" & vbLf))
" Log the exception and notify system operators
ExceptionUtility.LogException(exc, 'DefaultPage')
ExceptionUtility.NotifySystemOps(exc)
" Clear the error from the server
Server.ClearError(Q)

Else &
" Pass the error on to the default global handler
End 1If

End Sub

T

98-363 Web Development Fundamentals

Application-Level Example Using ASP.NET

= In ASP.NET, you use the <customErrors> handler to handle your
application-level exceptions.

= You must access your Web application’s Web.config file by adding the
following lines of code to direct a user to your custom error page:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>

<customErrors mode=0n
defaultRedirect=yourCustomErrorPage.aspx />

</system.web>
</configuration>

The following lines add special handling of HTTP error codes:

<error statusCode="404" redirect="notFoundError.html"> e
<error statusCode="403" redirect="forbiddenError._html'>

98-363 Web Development Fundamentals

Server-Level Error Handling in ASP.NET

Microsoft Internet Information Services (I11S) allows custom error
handling at the server level in four different ways:

1. If an error occurs, the server can display an automatically
provided IIS error message.

2. The server also can output a customized error message if you have
designed one for a specific error.

3. Instead of displaying an IS error message, the server can redirect
a user to a local Uniform Resource Locator (URL).

Alternatively, the server can redirect a user to an external URL.

3.2
98-363 Web Development Fundamentals

Common HTTP Errors

Here are some common HTTP errors for which the developer should design error pages.

Error # Error Code IIS Error Information

403 Forbidden HTTP Error 403 - Forbidden

HTTP 403.1 - Forbidden: Execute Access Forbidden

HTTP 403.2 - Forbidden: Read Access Forbidden

Page Not Found HTTP 404 - File not found

HTTP 404.1 - Web site not found

Internal Server Error HTTP 500 - Internal server error

HTTP Error 500-11 - Server shutting down

Not Implemented Error 501 - Not implemented

98-363 Web Development Fundamentals

Lesson Summary

= [t is extremely important to catch errors and display appropriate
messages to the user.

= This can be done by four levels of error checking:
Code-block level
Page level

Application level

s

Server level

http://www.quia.com/quiz/5818194.html

	3.1 Debug a Web Application�3.2 Handle Web Application Errors�MTA Web Development Fundamentals 3 Test
	Debug a Web Application�
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Handle Web �Application Errors�
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

